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CHAPTER 1 INTRODUCTION 

1.1 Introduction to Ultrasonic NDE 

Nondestructive evaluation (NDE) is an interdisciplinary field which refers to the 

process by which various properties of a test object are examined without breaking it. 

Out of the various methods of nondestructive evaluation, the ultrasonic method is by far 

the most popular for determining the hidden flaws and characteristics of the test specimen 

[I]. This is mainly because, 

(a) ultrasound can be generated and detected relatively inexpensively, 

(b) ultrasonic signals have better penetration capabilities, and 

(c) the ultrasonic return signal has sufficient information carrying capacity. 

In 1942, Firestone, an American, pioneered the use of pulsed ultrasonic energy for 

the testing of materials by disclosing the Reflectoscope. About the same time, Sproule, an 

Englishman, developed a similar pulse-echo instrument [2]. From these early beginnings, 

ultrasonic NDE has developed into a very sophisticated engineering discipline. The 

classical perception of ultrasonic NDE is that it involves the detection and characterization 

of flaws. Modem ultrasonic NDE, however, also includes the measurement of material 

microstructure and associated factors that govern mechanical properties and dynamic 

response. It goes beyond flaw detection and defect characterization. Ultrasonic NDE can 

assess and verify material moduli, strength, toughness and a host of other mechanical 

properties and morphological conditions. It provides a nondestmctive approach to 

characterizing initial states of engineering solids and their degradation or modification on 

exposure to service environments [3]. In the medical profession ultrasonic NDE is 

increasingly used for the in-vivo and in-vitro analysis of human tissues for diagnostic 

purposes [4]. 
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1.2 Problem Statement 

2 

In order to realize ±e full potentials of ultrasonic NDE in meeting the challenges 

and new demands of the engineering world, there is an evergrowing interest in exploring 

advanced signal acquisition, processing, and analysis methods. It is important to view 

ultrasonic NDE from various other perspectives and not just the extension of the 

Reflectoscope idea. The present research is an effort in that direction. 

The problem of ultrasonic NDE is viewed as the acoustic-impulse-response 

estimation and characterization problem. It is compared with the analogous problem from 

the field of radio communications, namely, radio-detection-and-ranging (radar). Based on 

the well-known, spread-spectrum principles of communications field, a new, improved 

approach to the acoustic-impulse-response estimation is being investigated. 

This new approach to ultrasonic NDE, called Spread-Spectmm Ultrasonic 

Evaluation (SSUE), produces an acoustic-impulse-response estimate that has a very large 

dynamic range and high signal-to-noise-ratio. The measured acoustic-impulse-response is, 

therefore, much more sensitive to very small changes in the acoustic characteristics of the 

test specimen; when compared with the conventional techniques. 

1.3 Significance of Woik 

SSUE employs a non-traditional approach to ultrasonic NDE that makes it more 

robust and powerful. One significant feature of SSUE technique is that it overcomes the 

maximum average power limitation of the existing techniques. Conventional pulsed 

ultrasonic NDE systems are peak power limited by the transducer breakdown voltage and 

the average power is limited by the narrow pulse duration which is important to maintain 

good resolution. In certain NDE applications, there are factors other than the transducer 

peak power limitation which limit the amplitude of the transmitted signal. In the case of 

medical ultrasound devices, for example, the peak power limit arises from the risk of 

causing tissue damage. Also, the application of ultrasonic NDE in an explosive 
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environment restricts the peak signal power level to within certain safe limits. For such 

kinds of applications, SSUE has a direct solution to increasing the average power while 

maintaining the resolution. 

The resolution of an ultrasonic signature is directly related to the operating 

frequencies of the NDE system. Higher frequencies provide better resolution but, 

unfortunately, they often experience greater attenuation, thus lowering the SNR. Here 

again the SSUE can help in improving the SNR to workable limits. 

Ultrasonic instrumentation in a field or industrial environment is subject to all 

kinds of acoustic and electromagnetic interferences. This causes a degradation of 

instrument sensitivity and reliability. SSUE, by virtue of its robust operating principal, is 

capable of interference rejection to a much larger extent 

The SSUE technique assures that numerous wave interactions occur in the entire 

volume of the test object. Hence, the received signal undergoes multiple interactions with 

many material properties, making this technique very sensitive to changes in the material 

characteristics. Most of the ultrasonic NDE is based upon a linear model for the 

interaction of ultrasound with the material. This assumption can only be valid if the 

acoustic signal amplimdes do not exceed the elastic limit of the material. This means that 

the linearity assumption might be violated when attempting to increase the SNR by 

increasing the signal amplitude. Since the SSUE technique works with low signal 

amplitudes, this also justifies the significance of SSUE. 

1.4 Dissertation Objectives 

The acoustic-impulse-response estimation approach to ultrasonic NDE will be 

formulated and the choice of spread-spectrum technique of impulse-response estimation 

will be justified. The development and optimization of a prototype SSUE system is 

presented. The optimized SSUE system employs a carefully tailored, pseudorandom 

excitation waveform, and, correlation processing at the receiver. A comprehensive 

analysis of the various alternatives for the optimum waveform and the correlation receiver 
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design is the central research focus of this woric. The optimized system is implemented in 

the hardware and its performance compared with the theoretically predicted results. The 

effectiveness of the SSUE technique is verified through a number of different experiments 

representing various practical NDE situations. 

To summarize, the dissertation objectives can be enumerated as, 

(a) Comparing the SSUE approach of acoustic impulse response 

estimation with established well-known approaches. 

(b) Developing a practical SSUE system optimized for self-noise and 

various other factors. 

(c) Investigating the fundamental and technological limitations of the 

SSUE technique. 

(d) Demonstrate the effectiveness of the SSUE technique in various 

ultrasonic NDE applications. 

1.5 Dissertation Ot^ganization 

The technology background for the development of the SSUE technique, including 

a comprehensive literature survey, is presented in chapter 2. Chapter 3 describes the 

theoretical formulation of the SSUE technique and its comparison with various other 

competing techniques. It also discusses the fundamental constraints of a practical SSUE 

system. The concepts of optimum and sub-optimum SSUE designs are defined in chapter 

4, followed by various approaches to an improved system design. The simulations of the 

developed approaches to SSUE system design and their performance evaluations are 

presented in chapter 5. Chapter 6 presents the lab-grade instrument development details 

and the evaluation of the system performance and limitations under various practical 

situations. An efficient method of correlator implementation is also discussed in chapter 6 

along with the comparison of its performance with various other, existing methods. 

Various signal processing tools used for the evaluation of the measured ultrasonic 

correlation signature are discussed in chapter 7. The effectiveness of the SSUE technique 
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under various practical NDE applications is demonstrated in chapter 8. Finally, chapter 9 

presents a summary of the research effort towards the development of this new approach 

to ultrasonic NDE and discusses the future direction of this work. 

1.6 Summary of Major New Contributions 

(a) The SSUE approach of acoustic-impulse-response estimation is compared with the 

other well known methods (Section 3.2 & 3.3). It is shown that the SSUE 

technique performs equivalent to the averaging technique for uniform random 

noise. However, for the case of narrowband interference, it performs better than 

the averaging technique (Figure 3.5). 

(b) The problem of self-noise associated with the ultrasonic correlation systems is 

analyzed and two general strategies for the self-noise suppression are developed. 

The first is based on the design of appropriate pseudorandom excitation waveforms 

(Section 4.4), while the other is based on the design of an appropriate self-noise 

suppression filter (Section 4.5). 

(c) It is proved that a bandpass waveform based on polyphase sequences does not 

exhibit perfect periodic autocorrelation properties (Section 4.4.3), even though the 

PACF of the sequence is perfect. 

(d) Analysis of various noise sources and the non-ideal effects in a practical SSUE 

instmment was performed and the fundamental and technological limitations of the 

system were established (Section 6.5). 

(e) A new design for the DSP based correlator is developed that is much more 

efficient compared to the earlier correlator implementations (Section 6.6). 

(f) A signature discrimination technique, based on the statistical pattern recognition 

methods, was developed (Section 7.3). 

(g) The application of the SSUE technique for geophysical exploration is considered 

which can eliminate the self-noise problem of the existing chirp-signal method 

(Section 8.5). 
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CHAPTER 2 TECHNOLOGY REVIEW 

This chapter reviews the fundamental concepts of ultrasonic nondestructive 

evaluation. This is followed by a survey of current ultrasonic NDE and NDT techniques, 

their capabilities and their limitations. The new problems and challenges faced by the 

NDE community and various newly emerging techniques in ultrasonic inspection and 

testing are discussed. Also, the science of ultrasonic NDE is compared with geophysics 

and radio communications and the fundamental similarities and differences are 

highlighted. The application of spread-spectmm techniques from radio communication, to 

address the problem of ultrasonic NDE, is discussed. Finally, the literature survey related 

to the current research work is presented. 

2.1 Fundamentals of Ultrasonic NDE 

Ultrasonic waves are vibrational waves having a frequency higher than the hearing 

range of the normal human ear, which is typically considered to be 20,000 cycles per 

second (Hz). The upper end of the range is not very well defined; however, most 

practical ultrasonic NDE is accomplished with frequencies from 200 KHz to 20 MHz [2]. 

Ultrasonic waves can be injected into an object and are thus used in materials and 

structures for flaw detection and material property determination. Ultrasonic inspection is 

accomplished by having electronically controlled ultrasound pulses introduced into the 

material. The ultrasonic energy then propagates within the material, finally reaching a 

detector. Material condition is diagnosed from the characteristics of the received 

ultrasonic energy. 
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2.1.1 Propagation of Ultrasound 

Practical ultrasonic wave propagation requires the presence of a medium such as a 

fluid or a solid. The wave propagates as a result of the vibration or periodic displacement 

of successive elements of the medium. The propagation speed, C, is related to the 

excitation frequency,/, by, 

C = f - X  (2.1) 

where X represents the ultrasound wavelength. The major types of ultrasonic waves are, 

longitudinal , transverse (shear), and surface. Most of the wave types are named 

according to the relationship of particles motion relative to the direction of propagation of 

ultrasonic wave. For longitudinal waves, the propagation and particle motion directions 

are the same. Since compressional and dilatational forces are involved, these are also 

called compression or pressure waves. These waves can propagate in solids, liquids and 

gases and are the most utilized wave mode for NDE applications. Shear waves, on the 

other hand, have particle motion transverse to the direction of propagation, that is, in a 

plane perpendicular to the direction of propagation. Shear wave inspection is generally 

restricted to solids only, since the propagation of shear wave can only occur in highly 

viscous fluids. Although many types of surface waves exist, a Rayleigh wave is the one 

most frequently used in nondestructive testing. These waves have an elliptical particle 

motion in the vertical plane and normally travel undispersed on smooth surfaces. Wave 

propagation properties are directly related to the elastic properties of the medium and the 

relative size of the object. Velocities of the various wave types are determined by the 

modulus, density, and Poisson's ratio for the particular material in which they are 

propagating. When an ultrasound wave strikes the interface between two media having 

different wave speeds, it is bent or refracted in the same manner as light refracts when 

passing from one material to another having different optical properties. The diffraction 

phenomenon of an ultrasonic wave is also similar to the diffraction of a light wave. 

Ultrasonic diffraction can be caused by small pores, inclusions, or the edge of cracks in metals. 
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2.1.2 Coupling of Ultrasound to Test Object 

Ultrasonic waves are attenuated very rapidly in air, especially the higher test 

frequencies. Additionally, differences in the acoustic impedance of air and of solid 

material cause most of the ultrasonic energy to be reflected at the surface of the solid 

rather than propagate in it. Consequently, a liquid couplant or direct transducer contact is 

required to couple the ultrasonic energy into solid materials. Liquid couplants may be in 

a tank where the test object is inmiersed, or a stream of water can be used to provide a 

sound path to test large objects and structures. When direct coupling is used, some oil, 

grease, or other viscous material is placed between the transducer and test object. For 

some applications, adhesive or pressure coupling is practical. 

The most important aspects of coupling acoustical energy into a medium are the 

uniformity and repeatability of the energy transfer and the percentage of the incident 

energy that is transferred. These are dependent on the mechanical factors, such as surface 

roughness and the material factors, such as relative acoustic impedances of the two 

mediums. 

The increased sensitivity of an ultrasonic NDE technique, such as the SSUE 

technique, makes it even more vulnerable to variations in the measurements because of 

various coupling effects, such as, transducer alignment, surface roughness, couplant 

thickness, etc.. There can be three solutions to this problem, that are used either 

independently or in some combination, depending upon the specific application. They are: 

(a) use of very precise, high quality fixtures to ensure a high degree of 

repeatability of transducer registration and applied pressure, 

(b) permanent mounting of transducers or embedding the transducer as an integral 

part of the test specimen itself, 

(c) use of advanced signal processing techniques to desensitize the measurements 

from the coupling variations. 
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2.1.3 Attenuation of Ultrasonic Waves 

Like all other forms of energy, ultrasonic waves attenuate as they propagate 

through a medium. Excessive attenuation in some materials can severely limit the use of 

ultrasound as a flaw detection method. This can be especially troublesome when 

searching for small flaws. Positive aspects of ultrasonic attenuation include the 

nondestructive determination of certain material properties such as grain structure and 

intergranular stress. 

Major categories of attenuation mechanisms include scattering, absorption and 

geometric factors. Scattering in metallic materials can be attributed to very small 

discontinuities, such as precipitates, and larger areas, such as, grain boundaries. 

Dislocation along with magnetic and thermoelastic damping are major types of absorption 

mechanisms. Geometric factors include diffraction, beam spreading, and coupling losses. 

Typical attenuation coefficients [2] may range firom less than 1 dB/cm for certain kind of 

steel to approximately 10 dB/cm for stainless steel and to over 30 dB/cm for polymers. 

2.1.4 Generation and Detection of Ultrasound 

Although numerous methods can be used to generate ultrasonic waves, 

piezoelectric transducers are the most conunon type. The piezoelectric effect occurs when 

an electric charge develops on the faces of a piezoelectric element that is mechanically 

deformed. Conversely, an electric signal or voltage applied across the faces will cause 

deformation. Thus, deformation of a crystal at high frequencies generates ultrasonic 

vibration that propagate as waves in the material when a suitable couplant is placed 

between the crystal and the material to be inspected. 

Piezoelectric transducers come in many types, sizes, and shapes. Tv/o basic types 

are immersion and contact. Since shear waves do not propagate in a fluid, longitudinal 

probes are required for exciting both longitudinal and shear waves in a solid inspected by 

the immersion method. Contact transducers may be normal-beam or angle beam type. 
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Transducers can be selected to generate an ultrasonic beam at a specific angle in a 

specific type of material, as governed by Snell's law [2]. 

2.1.5 Ultrasonic NDE Model 

Figure 2.1 shows a typical model of ultrasonic NDE. The instrumentation block 

represents the excitation of the test object with ultrasound and the detection of the 

scattered/reflected/attenuated ultrasound. This leads to the measurement of an appropriate 

acoustic signature that represents the characteristics of the test object. Depending upon 

the specific NDE requirement, various acoustic parameters like, velocity, attenuation, 

absorption and scattering are estimated from the measured acoustic signature. Finally, the 

measured values of these acoustic parameters are used for the characterization / 

classification of the test object. This final step can be based on the theoretical modeling 

of the acoustic signal propagation through the test object. In certain NDE situations, 

however, the interaction of the acoustic signal with the test material is very complicated 

and a realistic propagation model is hard to develop. For these situations, the 

characterization/classification process is based on the empirical correlations. 

Acoustic 
Parameters 
Estimation 

Characterization 
of Test Object 
(Classification) 

Ultrasonic 
Instrumentation 

Acoustic 
Signature 

Measurement 

Theoretical 
Modelling and 

Empirical Cotrelatioiis 

Figure 2.1: Ultrasonic NDE model. 
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2.2 Current Ultrasonic NDE Techniques 

Although there exists a wide range of different ultrasonic NDE techniques, each is 

designed for a certain kind of NDE requirement. These can be broadly grouped into the 

following categories. 

2.2.1 Pulse-Echo Technique 

Pulse-echo describes the technique where a pulsed ultrasonic beam, generated by 

an ultrasonic transducer, is transmitted into the material to be tested. The ultrasonic 

energy propagates into the test material and is reflected back from the discontinuities in 

the material and the boundary surfaces. The reflected ultrasound is picked up by a 

receiving ultrasonic transducer and converted to an electrical signal. Typically, a single 

transducer acts both as the transmitting and the receiving transducer much as a radar 

system uses only one antenna (Figure 2.2). 

amp 

Isolator, 

transducer 

amp 

Transmitter 

Receiver 

Test 
Specimen 

Processing 

Control 

Figure 2.2: Pulse-echo ultrasonic NDE technique. 
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2.2.2 Through-Transmission Technique 

The through transmission technique is used in several cases, particularly for highly 

attenuative materials where a pulse-echo trip causes a significant loss in signal strength. 

In this case two separate transducers are required for signal transmission and reception. 

This technique requires access to the two opposing surfaces of the test object. Raws are 

indicated by the loss or reduction of energy through the material (Figure 2.3). 

amp 

Transducer Transducer 

Receiver Transmitter 

Test 
Specimen 

Processing and Control 

Figure 2.3: Through-transmission NDE technique. 

2.2.3 Pitch-Catch Technique 

This technique is actually a generalization of the pulse-echo and through 

transmission technique. It involves separate transmit and receive transducers like the 

through-transmission method, however, the transducers are located at an angle between 

zero and 180 degrees. The angle is chosen such that there is little or no signal received 

unless there are flaws in the material (Figure 2.4). 
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Transmitter Receiver 

Transducer Transducer 

Test Specimen 

Figure 2.4: Pitch-catch ultrasonic NDE technique. 

2.2.4 Pulse Averaging Technique 

This technique can be used in conjunction with any one of the three pulsed 

excitation techniques mentioned above. It is applied in situations where the desired signal 

is very weak compared to the unwanted random noise. It is based upon the fact that the 

random noise in the received signal is uncorrelated from one acquisition to another and 

hence the averaging of multiple acquisitions tend to suppress the random noise 

component. However, this technique does not suppress the so-called "grain noise" which 

dominates many metals measurements. 

2.2.5 Ultrasonic Spectroscopv 

Ultrasonic spectroscopy is the study of ultrasonic waves resolved into their Fourier 

frequency components. Since many material properties manifest themselves as amplitude 

or phase changes in the ultrasonic waves used to interrogate a specimen, ultrasonic 
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Figure 2.5: Generalized ultrasonic spectroscopy system. 

spectroscopy has proven quite valuable. In addition to the use of ultrasonic spectroscopy 

for defect characterization and material property assessment, it has also proven useful for 

monitoring corrosion and the measurement of frequency dependent attenuation [5] and 

velocity (Figure 2.5). However, mode conversion in a specimen limits the usefulness 

2.3 New Applications and Newiy Emeiging Techniques of Ultrasonic NDE 

Although historically, nondestructive techniques have been used almost exclusively 

for the detection of macroscopic defects in structures after they have been in service for 

some time, it has become increasingly evident that it is both practical and cost effective to 

expand the role of nondestructive evaluation to include all aspects of materials production 

and application. Currently, efforts are directed at developing and perfecting 

nondestructive evaluation techniques which are capable of monitoring and controlling the 

materials production process; the materials stability during transport storage and 

fabrication; and the amount and the rate of degradation during the materials in-service life 

[6]. Ultrasonic techniques afford very useful and versatile nondestructive methods for 

evaluating the microstmcture , associated mechanical properties, and macroscopic flaws in 

solid materials. 
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Realization of these potentials of ultrasonic NDE demand the advancement in the 

areas of signature acquisition, processing, and analysis methods, with emphasis on 

automated, digital techniques. As a result of this driving force, a number of new 

techniques of ultrasonic NDE have emerged in recent years. Although these techniques 

are still restricted to lab investigations, their effectiveness for certain NDE applications 

has been well established. Some of the newly emerging techniques of ultrasonic NDE 

are, (a) acousto-ultrasonics, (b) split-spectrum processing, and (c) correlation techniques. 

2.3.1 Acousto-Ultrasonic Technique 

Composite materials fail in a manner different from other materials such as metals. 

Whereas metals fail due to the initiation and propagation of cracks, advanced composite 

materials fail due to an overall degradation of various physical properties [7]. 

Consequently, the NDE of such materials involves assessing the combined effects of the 

material's damaged condition rather than identifying and sizing single critical 

imperfections. The acousto-ultrasonic NDE technique [8, 9, 10, 11, 12] addresses this 

requirement. 

The term acousto-ultrasonics, as the name indicates, denotes an NDE technique 

that combines some aspects of acoustic emission methodology with ultrasonic simulation 

of stress waves. The acousto-ultrasonics approach uses analysis of simulated stress waves 

for detecting and mapping variations in mechanical properties. A short ultrasonic pulse of 

suitable center frequency is selected to simulate the stress wave and is transmitted into the 

material. Unlike most NDE techniques, acousto-ultrasonics is less concerned with flaw 

detection than with the assessment of the collective effects of various flaws and material 

anomalies. Acousto-ultrasonics is an extremely powerful technique because the induced 

stress waves interact with the entire volume of material through which they travel. As a 

result, propagation of stress waves is related to the total damage state of the material that 

lies in their path. 
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2.3.2 Split-Spectrum Processing Technique 

A limitation of ultrasonic nondestructive evaluation of materials with coarse 

structure is the poor signal-to-noise ratio caused by backscattering noise. Split-spectrum 

processing is a frequency diversity technique used to enhance the signal-to-noise ratio of 

ultrasonic signals in such situations [13, 14, 15]. The SNR of a received ultrasonic signal 

can be affected by two kinds of noise contents, (a) incoherent random noise such as 

instrumentation noise, which can be suppressed by temporal averaging or correlation 

techniques, and (b) coherent noise or clutter produced by the interference of the wavelets 

scattered by the randomly packed grain stmcture of the material. Due to the physical 

nature of the origin of clutter, the coherent noise is time-invariant and hence is not 

removed by temporal averaging or correlation techniques. It can be reduced by either 

spatial averaging or frequency diversity techniques such as split-spectrum processing. 

In split-spectrum processing, a wideband signal is transmitted and the received 

signal spectrum is partitioned into different frequency bands using spectral windows [16] 

to obtain a set of decorrelated signals. Once the decorrelation of grain echos has been 

achieved through the split-spectrum processing, noise suppression algorithms [17] can be 

applied to the resulting data to enhance the flaw signal. Therefore, split-spectrum 

processing eliminates the need for complex modulation techniques or multiple transmitters 

to achieve frequency diverse signals at the receiver. 

2.3.3 Correlation Technique 

It is well-accepted that the traditional ultrasonic NDE systems are peak power 

limited much like radar systems. Also, there is an evergrowing demand for greater 

measurement sensitivity and detectability for improved defect characterization. A 

common technique often employed by ultrasonic systems is temporal averaging [18]. 

However, there is a practical limit to which the improvement can be made. Another 

technique that is gaining popularity in ultrasonic applications is the random signal 



www.manaraa.com

17 

correlation technique [19]. It can be shown that, in theory, the correlation technique gives 

the same degree of improvement as temporal averaging [20]. However, the correlation 

technique provides certain practical advantages. 

Ultrasonic correlation systems [21] are based on the use of coded excitation 

waveforms of longer duration and the correlation processing of the received signal. 

Coded excitation accompanied by the received signal correlation permits order of 

magnitude improvement of SNR at modest peak signal amplitudes compared to 

conventional pulsed techniques [22, 23]. 

The SSUE technique bears some resemblances and some differences with the 

above described ultrasonic NDE techniques. These are sunmiarized as follows: 

(a) The SSUE technique is similar to the ultrasonic correlation technique as both 

employ pseudorandom excitation waveforms and correlation processing at the 

receiver. 

(b) The conventional correlation technique is self-noise limited, whereas the SSUE 

technique does not have self-noise limitation. This difference comes from the fact 

that SSUE employs periodic transmission of an optimized excitation waveform, as 

opposed to a pulsed transmission of a coded waveform. 

(c) The improvement in signal-to-random-noise ratio of the SSUE technique, the 

conventional correlation technique, and the averaging technique, are equivalent, as 

long as the noise is uniformly distributed over the entire spectral width. 

(d) The SSUE technique is similar to the acousto-ultrasonic technique since both are 

aimed at assessing the integrated state of the material's damaged condition rather 

than identifying and sizing single critical imperfections. 

(e) The SSUE technique is different than the acousto-ultrasonic technique as the first 

uses a continuous pseudorandom excitation waveform, while the later uses a pulsed 

excitation waveform. 

(f) The SSUE technique is totally different than the split-spectrum processing 

technique, since the first is aimed at the suppression of random uncorrelated noise, 

while the later is aimed at the suppression of correlated grain noise. 
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2.4 Comparison of NDE with Geophysics and Communications 

The problem of ultrasonic nondestructive evaluation bears striking basic similarities 

with the seismic exploration problem of geophysics and the radar problem of 

communications field. There are four basic elements common to each problem, 

(a) use of an excitation/interrogation signal of some form 

(b) measurement of echo/scattered signal 

(c) quasi-stationary unknown channel 

(d) processing of measured signal to extract useful information 

The purpose of the seismic exploration [24] is to determine the nature of different 

layers of earth beneath its surface. This is mainly done to search for oil and gas 

reservoirs. In this process dynamite or some other type of impulsive energy source is 

used to excite a "seismic wavelet" inside the earth. The wavelet is partially reflected back 

from various layers of earth and is recorded with "geophones". The essential features of a 

seismic exploration system are, 

(a) an active source of energy at the surface of earth, such as dynamite, 

air gun, or a chirp signal generator, 

(b) propagation of acoustic (vibrational) waves outward from the source 

into the earth, 

(c) reflection of vibrational waves from the interfaces between geologic 

layers in the earth's crust, 

(d) detection of the reflected waves at the surface of earth. 

The original purpose for which radar systems were developed was to detect the 

presence of friendly and enemy aircraft flying at very long range and high altitudes. With 

the advancement in radar technology, it became possible to characterize the detected 

targets and also the atmospheric channel through which the radar signal propagates. 

Radar target characterization typically involves, the location of the target in space about 

the radar, the time rate of change of the target's location in space, and in some cases, the 

identification of the target as being a particular one of a number of classes of targets [25]. 



www.manaraa.com

19 

A conventional radar transmits a very short time-duration pulse of radio frequency 

energy into the air as an electromagnetic wave. The transmitted signal propagates into the 

charmel obeying the laws of electromagnetic wave propagation and is scattered by the 

presence of any conducting structure like an aircraft. A portion of the scattered signal 

travels back towards the radar antenna and is picked up by the receiver. The radar 

receiver discriminates against the ever-present noise from various sources and a very weak 

echo signal that represents the presence of a valid target. The accuracy of the data 

available from a radar is limited by the thermal noise introduced by the radar receiver, 

echos from targets of no interest (known as clutter), and externally generated interference. 

In order to combat against the unwanted noise and clutter, present day radars often 

employ some form of pulse compression. By using pulse compression methods it is 

possible to extract a considerably weak echo signal out of orders-of-magnitude stronger 

random noise and in the presence of intentional interference or jamming. 

2.5 Application of Spread-Spectnim Techniques 

Spread-spectrum techniques were primarily developed for the military applications 

of signal hiding, interference suppression, and anti-jamming [26]. For a long time its 

application was restricted to military communications and radars. It was only recently 

that these techniques became well known in the private sector and gradually their potential 

is being realized by researchers in various fields of science. 

Because of the striking similarities, geophysics people adopted these techniques 

with remarkable success [27]. In the ultrasonic NDE area, these concepts can also be 

applied but the adaptation has been slow. In ultrasonic NDE, the use of pulse 

compression techniques has been studied by many people but they have not become 

widely known or used, probably for two reasons, 

(a) lack of theoretical appreciation, and 

(b) self-noise limitation of these techniques. 

The SSUE system bears a very close resemblance to a spread-spectrum 
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communication system. In fact, the governing principles of SSUE are derived from the 

spread-spectrum concepts in the conununications field. However, there are quite a few 

important differences between the two systems. It is very important to clearly understand 

the similarities and the differences between the two systems, so that the techniques and 

the concepts from one field can be successfully adopted to the other field. Some 

important similarities and differences between the two systems are highlighted below: 

(a) A typical communication system is based on data transmission and spread-

spectrum techniques are used to make the system robust under adverse/hostile 

operating conditions. SSUE is dissimilar in this respect as there is no data 

transmission involved. 

(b) A radar system employs spread-spectrum techniques to increase the time-

bandwidth product, thereby maximizing resolution and SNR at the same time. 

SSUE system also uses spread-spectrum techniques for the same purpose. 

(c) A radar system has to deal with doppler frequency shift as the targets of interest 

are in motion with respect to the transmitter/receiver. The typical SSUE 

application involves signal returns from a stationary test object, so the doppler shift 

is not a problem. 

(d) A radar transmitter is limited mainly by its peak power. The SSUE transmitter, 

i.e., an ultrasonic transducer, is also limited by its peak power handling capacity. 

(e) Typically, a radar transmitter uses a saturation amplifier at its final amplification 

stage. Therefore, an amplitude modulated signal can not be effectively used. 

SSUE has a linear power amplifier, so it can handle AM signals without any 

problem. 

(f) In most communication systems the carrier fi^quency, f^, is much larger than the 

system bandwidth, B, so it is easy to filter out the harmonics. Thus the 

mathematical analysis of the system often assumes, (f^ » B). In SSUE, typically, 

(fg = B/2), so the narrow bandwidth assumption is not valid. 

(g) In both SSUE and a monostatic radar system, the transmitter and receiver are co-

located. Hence, synchronization error and carrier frequency &. phase estimation 
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errors can be eliminated / minimized by using a conmion local oscillator and 

synchronization clock. However, the stability of carrier and the sync clock are 

very crucial for the optimum system performance. 

(h) SSUE estimates the impulse response of the channel/ medium/ test object, and 

requires a large dynamic range. A radar system also does the same and has similar 

requirements. 

2.6 Literature Survey 

Since the development of spread-spectrum ultrasonic evaluation technique is based 

upon the concepts and research derived from the diverse fields of radio communication, 

geophysics and ultrasonics, the literature survey performed for this work is grouped into 

the following three categories, 

(a) Communication and radar systems 

(b) Geophysical exploration systems 

(c) Ultrasonic correlation systems 

2.6.1 Communication and Radar Svstems 

There are two major applications of spread-spectrum techniques in radio 

communication area. In data communication systems, spread-spectrum techniques are 

employed, predominantly, for the purpose of channel sharing [28], narrow-band 

interference rejection and signal hiding [29]. In radar systems, spread-spectrum 

techniques are used for anti-jamming, interference rejection and improving the target 

detection capability (MDS, minimum discemable signal) [30]. 

Three kinds of techniques are used to increase the detection capability of a radar. 

These are, swept frequency chirp signal, pseudorandom sequences, and polyphase pulse 

compression waveforms [31]. The swept frequency chirp was the easiest for analog 

circuit implementation, so it was more popular prior to the era of digital signal processing. 
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The analog implementation of the frequency chirp technique was carried out by the use of 

dispersive delay lines as a pulse expander-compressor [32]. The advancement in digital 

signal processing facilitated the use of various pseudorandom binary sequences of which 

the maximal-length sequences are the most frequently used [33]. These sequences did not 

have very good autocorrelation sidelobe characteristics and also were very sensitive to 

doppler frequency shifts [34]. This led to the development of a new class of sequences 

called Polyphase sequences. In 1965, Golomb and Scholtz [35] proposed a class of 

generalized polyphase Barker sequences that have good periodic and aperiodic 

autocorrelation properties [36]. Well known polyphase sequences are Golomb sequences, 

Frank sequences, PI, P2, P3 and P4 sequences [37]. It has been shown that all these 

sequences have better correlation properties than the pseudorandom binary sequences. 

Also, they exhibit better doppler tolerance [38, 39, 40]. 

In addition to the above techniques, the use of amplitude modulated sequences, 

like Huffman sequences, has also been considered for radar applications [41]. Huffman 

sequences exhibit very good correlation properties, however, the Huffman waveform 

consists of sequence elements that vary both in amplitude and the phase, which is 

typically not suited for radar applications. 

2.6.2 Geophysical Exploration Systems 

Although a number of nonexplosive energy sources are used in the seismic 

exploration, the source employed in a majority of all work on land is dynamite [42]. 

Until about 1955, this was the only source that provided sufficient energy to yield 

satisfactory reflection seismograms. However, the introduction of magnetic tape recording 

and computers in the 1950s made it possible to build up usable signals from low-energy 

nonexplosive sources by adding synchronized returns from many individual impacts [43]. 

This is an equivalent of averaging technique of ultrasonic NDE discussed earlier in section 

2.2.2. The various types of nondynamite sources offered operational and economic 

advantages over dynamite in many types of exploration areas, and as a result their use has 
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risen steadily since their introduction [44, 45, 46]. 

The nonexplosive sources allow an almost unlimited number of effectively 

simultaneous impulses to introduce energy into the earth's cmst, without the cost of 

drilling and without the hazards involved with dynamite. These alternative sources 

involve mechanical impact upon the land surface or shaking the surface with a mechanical 

vibrator. A typical weight dropping source is a "Thumper" and a typical vibratory source 

is "Vibroseis". In the Thumper, the weight is carried by a crane on a special truck. 

When released, the weight drops down 3 meters. It is hoisted from the ground 

inmiediately after the impact so that it can be dropped again. The seismic waves resulting 

from each drop are picked up by the detectors and recorded for subsequent processing by 

the computer. 

In Vibroseis, the source is oscillatory rather than impulsive and continues from 7 

to 21 seconds, depending upon the purpose. The frequency of the signal slowly changes 

over the duration of signal, so the signal is of swept-frequency type or chirp-signal, 

commonly used in radars. The return signals recorded in the field cannot be interpreted 

directly, as is generally possible for return signals produced by impulsive sources. As a 

result, Vibroseis data must be computer processed by cross-correlation of the received 

signal with the swept frequency source signal. A typical Vibroseis source is made up of a 

2 ton mass with a hydraulic vibrator controlled by a preprogrammed swept-frequency 

signal. 

2.6.3 Ultrasonic Correlation Svstems 

The use of random signal correlation techniques for ultrasonic NDE applications 

was first envisioned in early 70's by a group of researchers at the School of Electrical 

Engineering, Purdue University [47, 48, 49]. The basic approach in those systems, 

however, was of transmitting an expanded pulse and performing pulse compression at the 

receiver. The first concept was presented by [50] where the system was based on purely 

random noise. The random noise was generated by a radio frequency noise generator. A 
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major problem in that system was of signal storage and delay generation. The delay line 

used first was a tube of water of variable length. The integrator was also of analog type 

[51], The next generation correlation systems used a digital delay line, but here again 

signal storage was a problem [52]. 

The concept of random signal correlation system is theoretically very attractive but 

there are a number of practical limitations. A more practical alternative is the use of 

pseudo-random signals instead of purely random ones. The use of deterministic pseudo

random sequences instead of a purely random waveform was first reported by Elias in 

1980 [53]. They used a pseudorandom signal generator which can simultaneously generate 

the transmitted waveform and a delayed version of the transmitted waveform required for 

the correlation operation at the receiver. The problem was self-noise and base-band 

signal. 

The self-noise problem was theoretically solved by the use of Golay codes. There 

were two problems here. The practical results were not as good and secondly, the 

procedure was quite complicated [54, 55, 56]. 

There has also been quite an interest in the use of FM chirp signals for pulse-

compression in ultrasonic NDE systems [57, 58, 59]. An extension of this idea is the use 

of a pseudo-chirp waveform [60]. The self-noise problem exists in those systems as well 

and various filtering techniques are developed for self-noise suppression. 
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CHAPTER 3 THEORETICAL DEVELOPMENT 

This chapter establishes the basic theoretical framework in which the spread-

spectrum ultrasonic evaluation (SSUE) technique is developed and analyzed. The acoustic 

impulse response approach to the problem of ultrasonic NDE is formulated and the 

concepts of correlation and convolution are used to describe the governing principals of 

various correlation techniques for impulse response estimation. Finally, the conceptual 

model of the SSUE technique is presented along with the associated theoretical 

formulation. 

3.1 Acoustic Impulse Response Approach to Ultrasonic NDE 

With the exception of a few specialized cases, all ultrasonic NDE techniques are 

based on the acquisition of a signamre function, obtained by introducing an acoustic signal 

of some sort into the test object. Hence, these techniques can be modeled as an input 

output system (Figure 3.1), and the signature function is equivalent to the modeled system 

impulse response. A generalized ultrasonic NDE system model contains provisions for, 

(a) generating ultrasound and coupling it to the test object, 

(b) receiving a portion of the ultrasound which has interacted with the 

object under study, 

(c) analyzing the received signal, and 

(d) interpretation of results. 

In the generalized system model of Figure 3.1, an electrical waveform generated 

by the transmitter is applied to the transmitting transducer. Conversion of the electrical 

energy into the mechanical energy occurs within the transducer, producing an ultrasonic 

waveform. As the wave propagates through the material being studied, interactions of the 
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Figure 3.1: Generalized ultrasonic NDE system model. 

ultrasonic energy with the material alter the amplitude, phase and direction of the wave. 

A receiving transducer intercepts a portion of the ultrasonic energy and conversion occurs 

from mechanical to electrical energy. Because the electrical signal is usually very weak, 

an amplifier is used to increase the signal strength to useable limits. The purpose of the 

analysis system, that follows the amplifier, is to extract various kinds of information out 

of the received signal and to characterize the test object on the basis of extracted 

information. 

Since, in nondestructive evaluation applications, it is not desirable that the 

ultrasonic waves alter the material through which they pass, it is necessary to work with 

very low amplitude waves, which, in most cases, can be considered to obey the linear 

elasticity theory [6]. Also, the ultrasonic transducer is a linear device in which voltage is 

directly related to the pressure and current to displacement. As long as the material is 

excited in its elastic region, the linearity principal holds. Thus a small-signzil linear 

model can be developed for most ultrasonic nondestructive testing applications and the 

generalized theory of linear-time-invariant (LTI) systems can be applied. 
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3.1.1 LTT System model 

The impulse response model of an LTI system is shown in Figure 3.2. The output 

of the system, y(t), is the convolution of the system input, x(t), and the system impulse 

response, h(t), given as. 

y(t)=J A(v)x(f-v)dv (3.1) 

and represented by the convolution notation as, 

y(t)=x(t)*h(t) (3-2) 

LTI system 

output 

Figure 3.2: Impulse response model of an LTI system. 

For an LTI system, its impulse response completely describes the system 

characteristics. Not only does this means that, given an arbitrary input the corresponding 

output can be determined, but a wealth of information regarding the physical nature of the 

system is also contained in the output. A sunmiary discussion on the concept of impulse 

response for an LTI system is provided in Appendix B. An important conclusion is that, 

for physically realizable systems, the associated impulse response has the following 

characteristics: 

(a) h(t) is a real function 

(b) h(t) is causal 

(c) h(t) is of finite duration 

(d) h(t) has finite energy 
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Thus the infinite integral of equation (3.1) modifies to, 

To 

y(t)=Jh(y)x(t-v')dv 
0 

where is the time span of the impulse response function, h(t). 

3.2 Acoustic Impulse Response Elstimation Methods 

After establishing a linear time-invariant system model of ultrasonic NDE, it is 

possible to apply linear system theory to determine the impulse response of this model. 

Even though the true impulse response is physically nonrealizable, it is possible to make a 

reasonable estimate of the true impulse response and there exists more than one methods 

of doing so. A detailed discussion and comparison of various methods of impulse 

response estimation is provided as Appendix C. The focus here is on correlation 

techniques for impulse response estimation. These techniques can be further classified 

according to Figure 3.3. There are two main features common to all types of correlation 

techniques. These are: 

(a) use of an excitation signal with a large time-bandwidth product, and 

(b) use of a correlation filter at the receiver. 

The operating principal of each correlation technique is governed by a particular definition 

of the correlation function. A detailed discussion on various definitions of the correlation 

function is provided as Appendix A. The important results from the appendix are 

reproduced here. 

Statistical definition of correlation fiinction: Let the waveforms x(t) and y(t) 

represent two independent and jointly ergodic processes. Their crosscorrelation function is 

defined as. 
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Figure 3.3: Classification of correlation techniques. 
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(3.4) 
0 

Mathematical definition of correlation function: A deterministic waveform can 

either be time-limited or periodic. For time-limited waveforms, the correlation process is 

called linear correlation. Hence the linear crosscorrelation function (LCCF) of two 

waveforms, x(t) and y(t), both timelimited to ( 0 < t < ), is defined as, 

To 
Ostsr„ (3.5) 

Another situation can be when one of the two waveforms, say x(t), is periodic with 

period Tp, while the other, y(t), is timelimited to ( 0 < t < ), such that, ( Tp > T^, ). 

The crosscorrelation function of such waveforms will also be periodic with period, Tp. It 

is therefore called a periodic crosscorrelation function (PCCF), and is given by. 



www.manaraa.com

30 

- ' 

<I>;^('C) =—/y(0 X \t-x)dt (3.6) 
PQ 

3.2.1 Random and Pseudorandom Signal Correlation Methods 

A generalized correlation system model is shown in Figure 3.4. The output of the 

correlator, as derived in Appendix C, is given as, 

<i>5r(T)=<f>B(T)*A('r) (3.7) 

The random signal correlation method is based on the statistical definition of correlation 

function. It employs a random excitation waveform, and the correlator approximates the 

true crosscorrelation function as defined in equation (3.4), by integrating over a 

sufficiently large time interval. 

In addition to the obvious disadvantage of having a non-ideal correlator, there are 

two practical problems associated with this method, especially in the digital system 

implementation. These are: 

(a) generation and storage of a truly random excitation signal, 

(b) generation of arbitrary delay in the reference signal required for 

crosscorrelation. 

Correlator 

Figure 3.4: Generalized correlation system model. 
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The pseudorandom signal correlation method is based on the mathematical 

definition of correlation function. It employs a pseudorandom excitation waveform, which 

can either be an expanded pulse, for a coded-pulse correlation system, or a continuous 

periodic waveform, for a periodic correlation system. The correlator in both the cases 

evaluates the exact correlation function as represented by equations (3.5) & (3.6). 

3.2.2 Self-Noise in Correlation Svstems 

In all types of correlation systems, it is desired to employ an excitation waveform 

that possesses perfect autocorrelation properties. A perfect autocorrelation function in the 

present context implies zero correlation sidelobes. Thus, the ideal autocorrelation function 

of an excitation waveform, s(t), can be written as, 

4>«(t)=0 for x>T^ (3.8) 

where T^ represents the symbol duration or the "chip interval", and is inversely related to 

the bandwidth of the excitation waveform. 

If the excitation waveform does not meet this condition, it results into what is 

called the self-noise of the system. Self-noise is an undesirable characteristics of 

correlation systems as it can bring unreal artifacts in the measured impulse response. 

Self-noise can result into masking of weaker signal components of the true impulse 

response. 

In case of random signal correlation systems, the self-noise is a result of non-ideal 

correlator implementation and it can only be minimized by increasing the integration 

interval of the correlator, which means, at the cost of increased processing resources. 

Thus, in practice such systems provide much lesser advantage than their pseudorandom 

counterparts. 

In the pseudorandom category, the coded-pulse systems employ a linear correlator 

and hence, the linear autocorrelation characteristics of the excitation waveform is of 
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importance. There has been extensive research in the field of conununications [35, 36, 

37] to design waveforms with smaller and smaller autocorrelation sidelobes. The 

autocorrelation characteristics of a pseudorandom waveform directly depends on the 

autocorrelation properties of the corresponding pseudorandom sequence. A variety of 

sequences have been developed for this purpose. Some well known sequences in this 

context are. Barker sequences, maximal-length sequences, polyphase sequences, 

complementary sequences, and Golomb sequences. However, there is a fundamental 

lower limit beyond which sidelobe suppression is not possible, and out of all the different 

sequences mentioned above, only the Barker sequences meet this limit [35]. 

In case of periodic signal correlation systems, the periodic correlation 

characteristics of the excitation waveform and the associated sequence determine the self-

noise level. There is no fundamental limit to sidelobe suppression, and in theory, the 

sidelobes can be completely eliminated. This issue is further discussed in the next 

chapter. 

3.3 Coirelation versus Impulse Response Averaging 

The output of a correlation system is proportional to the impulse response of the 

composite test system, analogous to the output of a pulsed system (see Appendix C for 

detail). However, the correlation system provides an improvement in the output signal-to-

noise ratio (SNR). Another technique frequently used for SNR improvement is impulse 

response averaging. In certain respects correlation processing and impulse response 

averaging are very similar. There are however, certain practical benefits which makes the 

correlation technique superior. The following discussion indicates the strengths of 

correlation technique over impulse response averaging. 

The averaging technique is based on the ensemble-average concept of a random 

signal, while, the correlation technique implies the time-average concept. It is well known 

[61] that, if the random process can be considered ergodic, the two types of averages are 

equivalent and hence, in theory, correlation and averaging techniques are equivalent. The 
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difference comes in the practical implementation. In order to perform an ensemble-

averaging of L realizations of the measurement, one has to transmit L periodic pulses, and 

receive L periods of the pulse-echo waveform. On the other hand, the correlation 

technique can provide the equivalent averaging effect with only a single period of the 

pseudorandom waveform. 

There is yet another argument which shows the robustness and the superiority of 

correlation method over the averaging technique. So far, in our analysis we assumed that 

the noise spectrum is uniformly distributed over the spectrum of the interrogation signal. 

In the absence of any specific knowledge about the unwanted system noise characteristics, 

this is considered a reasonable assumption. It generally represents the worst case and 

provides the lower bound on the system performance. 

While the assumption of uniform distribution of the frequency spectrum of noise is 

true in many situations, it is rarely true in certain other situations, especially in broadband 

systems. Particularly, in ultrasonic NDE, acoustic noise has a non-uniform spectrum, 

various kinds of electrical interferences are in fact highly narrowbanded. This fact was 

practically observed during the instmment development and laboratory experimentation 

part of the current research work. The operation of ultrasonic NDE instrument in a field 

environment is even more susceptible to various kinds of interferences. Under these 

conditions, correlation method performs superior than the averaging method. 

3.5.1 Mathematical Analvsis 

Let the impulsive excitation system be represented in discrete time by, 

y(n)=;c(n)*A(/i)+«(«) (3-9) 

where x(n) is a pulsed excitation signal. The width of the pulse is T^ and the pulse 

repetition interval is LT^. Here, h(n) represents the impulse response of the composite 

system, and y(n) is the measured system output which consists of a signal component. 
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and an interference component, u(n). Assuming a perfectly coherent system, the multiple 

realizations of the received signal will have the same signal component but different 

interference components. Hence they can be represented as, 

3'j(n)=x(rt)*A(n)+aj(n) (3.10) 

The result of impulse averaging can be represented by, 

L L L 

z(«) =1^ >'*(») =E *(n) *A(n) +5^ (3-11) 
k=i t=i ;fc=i 

L 

z{n) =I[*(n) *hin)] +J2 (312) 
*=i 

z(n)=L[x(n)*h(n)]+wJn) (3.13) 

where Wj(n) represents the interference component of the averaged signal, z(n). 

The received signal in a pseudorandom correlation system can be written as, 

r(n) =s(n) *h(n) +«(n) (3.14) 

and the correlator output is given by, 

L 

<|)^(T:) = 4>a(T)»/i(T)+52s(n)tt(n-T) (3.15) 
/I=l 

= 4>a(T)*/l(T)+W^(T) (3.16) 

where Wg(x) represents the interference component of the correlator output. If the 

excitation signals s(n) and x(n) have equal amplitudes and the period of s(n) is L times 

the duration of x(n), it can be shown that. 
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<|)„(t)*A(T)=I[X(T)*A(T)] (3-17) 

Hence the energy of the signal components of equations (3.16) and (3.13) is equal and the 

performance comparison reduces to the comparison of the interference components, Wj(n) 

and Wc(x), which are given as, 

L 

*=i 

L 

Jl=l 

As a worst case scenario, the interfering signal can be considered as a single 

frequency component having an amplimde A, and the averaging operation will result into 

the coherent averaging of the interfering signal, leading to, 

w^(n)=Li4cos(o)Qn) (3.20) 

Thus the interference signal power will be (LA)*/2. The expression of equation (3.19) for 

the case of single frequency interference component can be written as, 

L 

wjiz)=A^s(n-x)cosi<ji)n) (3.21) 
11=1 

Considering that s(n) is a discrete-time binary pseudorandom waveform, with elements +I 

and -1, the product 5(n-x)cos(ton) in equation (3.21) represents a BPSK modulation of the 

interfering signal. This process makes the interfering signal uncorrelated from one sample 

to another. Hence, the summation in equation (3.21) represents averaging of independent 

samples (non-coherent averaging), and the power of WJ(t) will be LAV2. This represents 

the reduction of interference power by a factor of L, compared to the averaging case. 
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Figure 3.5 gives the graphical representation of the SNR improvement by 

correlation versus averaging methods under different conditions of interference. It is 

assumed that the average power of the interfering signal remains constant. The spectral 

power distribution of interference signal varies from one extreme of uniform distribution 

to the other extreme of a single frequency component. 

3.4 Spread-Spectnim Ultrasonic Evaluatioii Tecbniciue 

Spread-spectrum ultrasonic evaluation (SSUE) is a new technique of ultrasonic 

nondestructive evaluation that is being investigated at the Iowa State University [62, 63, 

64]. This technique is based upon the impulse response approach to ultrasonic NDE. It 

estimates the acoustic-impulse-response of the test object through the method of periodic 

pseudorandom signal correlation. The basic method of generation of pseudorandom 

excitation waveform and the correlation processing of the received signal is adopted from 

the Direct-Sequence Spread-Spectrum technique of conmiunications field, hence the name 

spread-spectrum ultrasonic evaluation (SSUE) is given to this technique. 
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Figure 3.5: Performance comparison of correlation and averaging technique. 
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The block diagram of the SSUE system is given in Figure 3.6. The spread-

spectrum transmitter generates a pseudorandom excitation waveform, s(t). This is 

introduced into the test object as an ultrasonic signal using a suitable transmit transducer. 

The scattered ultrasound is picked up by the receiving transducer and converted into an 

electrical signal, r(t). Function h(t) represents the impulse response of the composite 

system which includes, the test object, transmit and receive transducers and their 

associated electronics. The spread-spectrum correlation receiver computes the cross-

correlation between the received waveform, r(t) and the transmitted waveform, s(t). Since 

the ultrasonic transducers typically have a bandpass characteristics, the excitation 

waveform, s(t), is generated by the modulation of a carrier signal of frequency, f^, with a 

pseudorandom sequence. 

The output of the correlator under ideal conditions can be written as, 

(3-22) 

The correlator output, A (t). is referred as the ultrasonic correlation signature as it 

s(t) 
Tx 
Transducer 

reference 
waveform 

Transducer 
r(t) 

Test 
Object 

Spread-Spectrum 
Transmitter 

Spread-Spectrum 
Correlation Receiver 

Host 
Computer 

Figure 3.6: SSUE system block diagram. 
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represents the characteristic signature of the test object. A host computer controls the 

transmitter and the receiver. It is also used as the signal processing platform for the 

analysis of the measured ultrasonic correlation signature. 

3.5 Practical Considerations forSSUE Technique 

A practical SSUE system has to deal with the following undesirable system 

characteristics, 

(a) Input signal, s(t), is not perfect 

(b) Various kinds of noise is present 

A perfect input signal for SSUE is one whose PACF is given by equation (3.8). The 

received signal, r(t), under the above conditions is given by, 

r(t)=h(t)*s(t)+n(t) (3.23) 

and the output of the correlator can be written as, 

<t)s.(T)=A(t) • ̂ J.x)+N^(x) (3.24) 

where N/x)  represents the random noise component of the ultrasonic correlation signature 

and is a result of the additive random noise component of the received signal r(t). It is 

given by, 

J sit+x)nit)dt . (3.25) 

The first term in equation (3.24) represents the convolution of the input signal 

PACF with the composite system impulse response. It can be considered as consisting of 

two additive components, such that, 

i^Jx)-h(x)*Nsix)*N^ix) (3.26) 
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Here Nj[x)  represents the self- noise component of the ultrasonic correlation signature. 

Self noise is a result of the autocorrelation sidelobes of the input signal. It is correlated 

with the input signal, s(t), and the system impulse response, h(t). Magnitude of self noise 

depends on, (a) the level of PACF sidelobes with respect to the mainlobe of the input 

signal, s(t), and, (b) the nature of the system impulse response, h(t). If h(t) contains a 

strong component like backwall reflection, the magnitude of N^x) can be large enough to 

mask a weaker component of h(t). 

Various sources of random noise are, (a) electrical noise, (b) acoustic noise, and, 

(c) quantization noise. All noise components can be assumed to be uncorrelated with 

each other as well as with h(t) and s(t). Magnitude of Nj[x) depends on the period of the 

input signal, i.e., the extent of pulse compression. 

Since N,(x)  and Njlx )  are independent and uncorrelated with respect to each other, 

the total noise magnitude will be dominated by the stronger of the two components. It is 

useful to define two types of signal to noise ratios, 

SNRj Signal to self noise ratio 

SNRr Signal to random noise ratio 

Under certain experimental conditions, SNR, will be much lesser than SNR^. In such a 

situation, the overall SNR can only be improved by increasing the pulse compression. In 

other conditions, the accuracy in the estimation of h(t) will be limited by the SNR^ . 

The above analysis opens three directions for further investigation, in order to 

achieve a better estimate of h(t). These are, 

(a) design of excitation waveform with better autocorrelation properties 

(b) design of improved correlation receiver in order to suppress self-noise 

(c) efficient correlator design, both in terms of time and computer resources 

The first two deal with the system design strategy. These are investigated in the 

following chapter. While, the third is a system implementation issue, and is, therefore, 

discussed at a later stage under Chapter 6. 
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CHAPTER 4 OPTIMUM SSUE SYSTEM DESIGN 

This chapter investigates various designs of the SSUE system and compares their 

performance. First the optimality criteria is defined followed by the analysis of an 

optimum SSUE system. Two types of system design approaches are considered. One is 

the optimum system design approach and the other is a sub-optimum system design 

approach. Finally, system optimization under the bandwidth constraint is considered. 

4.1 Mathematical Definitions and Preliminaries 

1 • Pseudorandom Sequence: A set of numbers, real or complex, possessing certain 

randomness properties. A two-valued pseudorandom sequence is based on two elements 

A and B, where A and B can be real or complex constants of any value. A binary 

pseudorandom sequence is a special case, where A = +1 and B = -I. A complex 

sequence {Zn} can be represented by its real and imaginary components or alternately by 

its magnitude and phase components, such that. 

2. PACF of a Pseudorandom Sequence: The periodic autocorrelation function of a 

complex pseudorandom sequence, {z„}, is defined as. 

(4.1) 

L 
(4.2) 

where k = 0, 1, 2, ... , (L-1), and L is the length of the sequence. 
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3. Perfect Pseudorandom Sequence: A given pseudorandom sequence is considered 

perfect if it possesses ideal PACF properties, defined as. 

«=1 

L 
(4.4) 

n=l 

where M is a real constant. For binary sequences, M = L. 

4. Baseband Pseudorandom Waveform: This is a baseband periodic waveform, c(t), 

based on the pseudorandom sequence, {z„}, and given by, 

L 

#1=1 

where, p(t) is a unit amplitude pulse of duration T^ starting at time zero. The period of 

the waveform, T, is given by, 

T=LT (4.6) 
e 

An altemate representation of c(t) is, 

c(0=i; a^Pit-nTyJY;̂  Kpit-nT î 
n=l 

where, a(t) and b(t) are respectively the inphase and quadrature waveform components. 

5. Bandpass Pseudorandom Waveform: Also called pseudorandom excitation waveform, 

this is a periodic bandpass waveform, s(t), based on the pseudorandom sequence, {z„}, and 
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given by, 

s(t)=a(t)cos(aJ)-if(t)sia(cjJ) (4.8) 

where, a(t) and b(t) are respectively the inphase and quadrature components of the 

baseband pseudorandom waveform, c(t), and a)^=27r/^ is the center frequency or carrier 

frequency of the bandpass waveform. 

6. PACF of a Pseudorandom Waveform: The periodic autocorrelation function of a 

pseudorandom waveform, s(t), is defined, in continuous time, as, 

T 

(4.9) 

and in discrete time as. 

f=0 

N 

11=1 

7. Perfect Pseudorandom Waveform: A given pseudorandom waveform is considered 

perfect if it possesses ideal PACF properties, defined as, 

4 > „ ( ' f ) = 0  / o ' - ( 4 - 1 1 )  

8. PCCF of two Pseudorandom Waveforms: The periodic crosscorrelation function of 

two waveforms is defined, in continuous time, as. 
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T 

<i)^(T)=J s{t-x)rit)dt (4-12) 
r=0 

and in discrete time as, 

N 

^s^^)=Y^s(n-x)r(n) (4-13) 
R=1 

9. Ideal System Impulse Response: This is the impulse response of composite ultrasonic 

NDE system that includes the test object, the transmit and receive transducers and 

associated amplifiers. The ideal impulse response, h(t), can be represented by, 

(4.14) 

where, h^Ct) represents the impulse response of the test object, and 

hs(t) represent the impulse response of the transducers, etc. 

10. Bandlimited Svstem Impulse Response: The bandlimited SSUE system impulse 

response is represented by h(t) and is given by, 

(415) 

where hjit) and ^ (r) are the bandlimited versions of h^Ct) and hs(t) respectively. 

11. Signal-to-random-noise ratio: The signal-to-random-noise ratio (SNR,) of the 

measured correlation signature represents the ratio of peak signal power and the average 

uncorrelated random noise power. It is defined as, 

SNRj = Peak Signal Power / Average Noise Power 
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If the correlation signature has a peak amplitude of A units, then the above definition is 

equivalent to. 

SNR^^A^IVarin) (4-16) 

A general definition of signal-to-noise ratio (SNR) always implies the randomness of 

noise. The categoric mention of the random-noise here is only for the purpose of 

distinction from the later described signal-to-self-noise ratio (SNRJ. 

12. Signal-to-self-noise ratio: The signal-to-self-noise ratio (SNRJ of the measured 

correlation signamre represents the ratio of peak signal power and the peak self-noise 

power. It is defined as, 

SNRj = Peak Signal Power / Peak Self-Noise Power 

For a pseudorandom waveform based on a maximal length sequence of length, L, the 

signal-to-self-noise ratio expressed in dB is given by, 

5iVK,=201ogio(l/L) (4.17) 

13. Dvnamic Range: Dynamic range of a signal or a waveform is defined as the ratio of 

amplitudes of the strongest signal component to the weakest signal component of interest. 

In ultrasonic NDE systems, it is generally desired to have a large dynamic range so that 

very weak reflections from a flaw can be delected in the presence of strong boundary 

reflections. 

14. Sensitivitv: Sensitivity is a qualitative term used to describe or compare the 

performance of a system in detecting very small changes in its measurements. It is 

directly related to the SNR of the system. Thus if a measurement system has large SNR, 

it is capable of detecting small changes in the measured parameters and is, therefore, more 

sensitive. 
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4.2 Ideal veisus Practical SSUE 

As we move from a mathematically ideal concept of SSUE technique towards a 

practical SSUE instrument, various non-ideal effects have to be taken into consideration. 

For the purpose of analysis, this transition from the ideal to a practical SSUE system is 

discussed through the following steps. 

(a) Ideal SSUE svstem: The ideal SSUE system is considered to have zero self-noise and 

no bandwidth limitation, thus the correlator output can be written as, 

<l>^(T)=A(T)+Ar,(T) (4.18) 

The system performance in this case is only limited by the signal to random noise ratio as 

defined earlier. 

( h )  Bandwidth constrained SSUE svstem: This represents an SSUE system with zero self 

noise, but having a finite system bandwidth B. The correlator output for such a system 

can be represented as, 

(4.19) 

where ft(t) represents a bandlimited version of the true impulse response, h{-z). and Nj^x) 

represents the bandlimited version of the additive whit noise, NJi-z) • The system 

performance in this case is limited by the signal to random noise ratio and the loss of 

resolution of h(t) due to the bandlimiting effect. 

(c) Self-Noise constrained SSUE svstem: This represents an SSUE system that has a 

non-zero self-noise but has no bandwidth limitation. The correlator output in this case is 

represented by three additive terms as. 
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<|)^(T)=A(T)+iV,(r)+Ar,(T) (4.20) 

where Nj^x) represents the self-noise component of the measured correlation signature. 

The system performance in this case can be limited by either the signal to random noise 

ratio or the signal to self noise ratio depending upon specific application conditions. 

fd)  Bandwidth and Self-Noise constrained SSUE system: This represents an SSUE 

system that has a non-zero self-noise and also has a finite system bandwidth. The 

correlator output in this case is represented by three additive terms as, 

^ ̂  

where represents the bandlimited version of the self-noise component, • The 

system performance in this case is limited by all the three factors, the signal to random 

noise ratio, signal to self noise ratio and the loss of resolution. 

The effect of finite bandwidth is the loss of resolution of h(t). Also, the high 

frequency (characteristics) features of the true impulse response would be missing in the 

measured correlation signature. This can be a setback in applications where high 

resolution is important or where high frequency characteristics are crucial to the nature of 

the problem. However, in certain other applications, it may not be a big disadvantage. 

An appropriate waveform design can ensure that we gain the maximum benefit of loss of 

average noise power as a result of bandlimiting, while minimizing the loss in signal power 

and its resolution. This aspect of the optimum waveform design will be discussed in 

section 4.6. 

The second non-ideal effect is due to the non-perfect PACF of the excitation 

waveform. As discussed earlier in section 3.7, this can be a serious limitation in various 

NDE situations, especially when an object of smaller dimensions is inspected. A major 

part of the present research effort was devoted to studying various methods of eliminating 

the self-noise. It was found that there can be two broad approaches to suppress the self-
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noise. One approach searches for various pseudorandom waveforms that have perfect 

PACF properties, while the other searches for an appropriate self-noise suppression filter 

for the given excitation waveform. The first approach results into what is called an 

optimum SSUE design and is discussed under section 4.4, while the second approach 

corresponds to the sub-optimum SSUE design and is presented under section 4.5. Before 

that, however, the optimality criteria for the system design needs to be defined. 

4.3 Optimality Criteria for a Practical SSUE System 

The SNR gain of SSUE system is first defined and evaluated. Various system 

optimization factors are then presented followed by a discussion on the optimization 

strategies pursed for SSUE system design. 

4.3.1 SNR Gain of SSUE 

This is the gain in signal-to-random-noise ratio of SSUE correlation signature 

compared to the signal-to-noise ratio of a pulsed excitation system, under the condition 

that the excitation waveform is peak-amplitude limited. For a pulsed excitation system, 

the received signal, y(k), is given as, 

y(ifc)=;c(it)*A(A:)+n(ifc) (4-22) 

where, x(k) is the input pulse of amplitude A, h(k) is the impulse function, and n(k) is the 

random noise with a standard deviation of q . For the purpose of SNR analysis, the 
It 

impulse response, h(t), can be assumed to be a delta function. Hence, 

y(Jk)=x(Jfe)+n(ife) (4.23) 

The SNR of this received signal is defined as. 
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SNRp=i—f (4.24) 

For the SSUE system, the received signal is given by, 

r(k)=s(k)*h(k)+n(k) (4.25) 

where, s(k) is the pseudorandom excitation waveform having an amplitude A, h(k) is the 

system impulse function, <md n(k) is the additive random noise with a standard deviation 

of • The output of the correlation filter can be written as, 

(4.26) 

Once again assuming /i(t)=:6(t)> we get, 

where, 

*=i 

and, 

L 
=E (4-29) 

fc=i 

The SNR for the correlator output is given by. 

VariNJix)) 
(4.30) 
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f L \2 
,2 Y^Sikf 

k=\ SNR^= 
^ L 

(4.31) 

The pseudorandom excitation waveform can be represented as the product of a 

pseudorandom sequence, z(k), with a pulse x(k) having amplitude A, such that, 

s(k)=z(k)jc(k) (4.32) 

a2 ^ 
SNRc = — (4-33) 

Comparing equation (4.33) with (4.24), the SNR gain, G, is given by, 

(4.34) 

If z(k) represents a binary sequence with elements +1 and -1, the above equation reduces 

to, 

G=L (4-35) 

where L is the length of pseudorandom binary sequence, z(k). 

4.3.2 Svstem Optimization Factors 

There are four basic factors to be optimized in the design process of an SSUE 

system. These are: 

(a) SNR Gain (b) Signal-to-self noise ratio 

(c) Energy efficiency (d) Resolution 
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The deOnitions of SNR gain factor and the signal-to-self-noise ratio for SSUE system has 

already been presented. The energy efficiency, q. is defined as, 

_aveTage transmit power 26) 
peak transmit power 

The optimality in resolution is independent of the other three optimization 

criterion. It is, therefore, discussed separately under section 4.6 of this chapter. Thus, the 

general approach is to first optimize the system with respect to the first three optimization 

factors and then to consider the optimization in resolution. Two types of system 

optimization strategies were pursed, 

(a) Optimum SSUE design 

(b) Sub-optimum SSUE design 

Sometimes, from the system implementation point of view, a sub-optimum design 

performs better or equally well with respect to the optimum designs and this was the spirit 

in pursing both the above strategies. The implementation losses for the optimum designs 

lower the overall performance compared to the suboptimum case. Also economic 

constraints might favor the suboptimum design. 

4.4 Optimum SSUE Design 

Optimum SSUE design implies optimum transmitter and optimum receiver (Figure 

4.1). An optimum transmitter is one that generates a periodic excitation waveform that 

has perfect PACF properties. An optimum receiver is one that provides the maximum 

theoretical SNR gain factor. 

4.4.1 Optimum Transmitter 

The SSUE transmitter consists of a waveform generator and a modulator (Figure 

4.2). The waveform generator generates the continuous-time baseband waveform, c(t). 
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Optimum 
Transmitter 

Optimum 
Receiver 

n(t) 

h(t) 

r(t) s(t) pseudo-noise 
waveform 
generator 

test 
object 

correlation 
filter 

1_ 
Transducer 

Rx 
Transducer 

Figure 4.1: Optimum SSUE model. 

based on the pseudorandom sequence, z(n), and the pulse function, p(t). For the present 

discussion, p(t) is assumed to be a rectangular pulse function, however, it is explained 

later that this is not the best choice of a pulse function for SSUE application. The 

m o d u l a t o r  t r a n s l a t e s  t h e  b a s e b a n d  w a v e f o r m ,  c ( t ) ,  t o  a  s u i t a b l e  c e n t e r  f r e q u e n c y  f ^ ,  

depending upon the specific application and the choice of transducers. The PACF of the 

final (bandpass) waveform, s(t), depends on the PACF properties of the baseband 

Rectangular Pulse Function Carrier Frequency 
P(0 fo 

c(t) s(t) _ 
PN Sequence • 

baseband 
waveform 

bandpass 
waveform 

Waveform 
Generator Modulator 

Figure 4.2: SSUE transmitter block diagram. 
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waveform, c(t), and in turn on the properties of the pseudorandom sequence, z(n). 

In order to generate a perfect excitation waveform, s(t), we need to begin with a 

perfect pseudorandom sequence, z(n), ensure that the corresponding baseband waveform, 

c(t), is perfect and that the modulator preserves the perfect PACF characteristics of the 

waveform as it translates from baseband to a center frequency f^. 

4.4.2 General Problem Formulation 

The perfect excitation waveform design problem is broken down into the following 

steps. Each step is mathematically analyzed and a set of necessary conditions are 

developed which lead to the design of a perfect excitation waveform. 

(a) Evaluation of PACF of a sequence 

(b) Evaluation of PACF of baseband waveform 

(c) Evaluation of PACF of bandpass waveform 

PACF of a Pseudorandom Sequence: Let {} be a complex PN sequence of 

length L, such that. 

(4.37) 

The PACF of the sequence is defined as. 

L 
(4.38) 

L 
(4.39) 

L L 
(4.40) 
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where, d = 1, 2, 3, ... (L-1). The PACF is considered perfect if, 

L 

PJ.d>'Y,^z\^'L,fi>rd'aimaAL) (4-41) 
n=l 

L 

n=l 

This implies that, for perfect PACF, 

L 

/l=l 

E 0ford*0 (4.44) 
rt=l 

PACF of Baseband Pseudorandom Waveform: Let c(t) be a periodic waveform of 

period T, based on the sequence {r } and given by, 

L 

n=l 

where, p(t) is a unit amplitude pulse of duration T^ starting at time zero. Also, 

T=LT^ (4.46) 

The periodic autocorrelation function (PACF) of the baseband waveform is defined as. 

<|) JT)=jc(t)c '(t-i-v)dt, O^v^T (4-47) 
^=o 

The integral over the waveform period, T, can be written as the sum of sub-integrals over 

one chip duration. Therefore, 
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iT, 

"=•1 («-i)r. 
(4.48) 

Each sub-integral of equation (4.48) can be further split into two parts, such that, 

the product [c(f).c*(f+T)] is constant over each integration interval (Figure 4.3). Also, the 

correlation lag, -c, can be written as. 

T=<ir +AT, AX<T. (4.49) 

£ nTj-At iT, 

(n-l)T^ nT^-Ax 

(4.50) 

« = 1 
(4.51) 

« = 1 11=1 

(4.52) 

c(t) 
s(t) 

c(t+x) 
s(t+x) 

(n-l)T, nTc 

I 
• Zn-1 Zn Zn-Kl • 

i 1 1 
1 1 i 

1 ^ 
1 1 i 

• ^n+d-I ^D+d ^n+d+I • 

T = AT + dTc 

Figure 4.3: Graphical representation of correlation. 
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Equation (4.52) is now in the form where the PACF properties of the sequence can 

be applied. If the sequence has perfect PACF as defined by equations (4.41) & (4.42), 

then, when (x<T^ ,d=0 ,x=Ax and equation (4.52) reduces down to, 

L(T,-x), for(4J3) 

when (t >T^,d*0 and equation (4.52) reduces down to, 

4>ee('C) =0. for T>r^ (4.54) 

Equations (4.53) and (4.54) define the perfect PACF of a baseband PN waveform. 

The above results lead to the conclusion that, for any complex pseudorandom sequence 

with perfect PACF, the resulting baseband waveform will also have a perfect PACF. 

PACF of Bandpass Pseudorandom Waveform: Let s(t) be a periodic bandpass 

waveform with period T, based on the complex sequence {, and given by, 

s(r)=a(Z)cos(ci)Qf)-KOsin(ci)Q/) (4.55) 

where, (Og=2Ttj^ is the carrier frequency. Also, we assume that the period of the carrier 

frequency, T^, is an integral multiple of the chip interval, T^ . The periodic 

autocorrelation function (PACF) of the bandpass waveform is given as, 

T 

<j)^(T)=j s(t)s(t+x)dt (4.56) 
t=o 

The product s(t)s(t+T) can be written as. 
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s(Os(r+T)=a(r)a(f+T)cos(<Oor)cos(<Oor+<»QT) 
+ fe(OKf+T)sin(a)of)sm(&Jof+<OoT) 
- a(Oi<f+i:)cos(<aof)sm(<Oof+(i)oT) 
- a(r+i:)fc(Osm(&)ot)cos(<ao^+«o''') 

and after applying some trigonometric identities as. 

2s(f)s(r+T)= a(Oa(r+T)[cos((i)oT)+ cos(2a)Qf+o)oT)i 
+ fc(OK^+'C)[COS(<OoT) - COS(2(Oof+(OoT)] 
- a(f)i>(^+T)[sm((i)oT)+ sin(2o)of+(«)QT)] 
+ a(f+T)d(0[sin((i)oT)- siii(2&iQr+ci)oT)] 

Hence, the PACF function, <{> (x), will consist of the following four integral terms. 

2<|)a(T)=f [a(r)a(f+'c) +'c)]cos(o)(,T>if 
t=o 
r 

+ J [a(t)a(t+x)-b(t)b(t+x)]cos(2(i}f/+<0QT:)dt 
f=0 
T 

- f +^f)fl(f+T)]sm(2o)Qf+a)Qir)^ir 
t=o 
T 

• J lb(t)a(t+T:) -a(t)b(t+xyism(<OQx)dt 
^0 

The last integral term of equation (4.59) above goes to zero and ±e expression for (j)^(T) 

simplifies to, 

T 

2<|)J^(t) = cos(o)oi^) J [a(t)a(t+x)+b(t)b(t+xy]dt (4.60) 
r=o 
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r 
+ cos(a)^T) J [ait)a(f+x)-b{t)b{t+'z)\cosl(!lvt/)dt (4^-61) 

t=0 

T 

- sinCw^T) J [a(r)a(f+T)-fc(f)fc(f+i:)]sm(2«Qr)<it (4.62) 
r=0 

T 

- cos((DgT) J [ait)b(t+x)+bit)a(t+x)]siD(2<i)^)dt (4.63) 
r=0 

T 

-sinCw^T) J [a(t)b(t+x)+bit)a(t+xy\cosi2(i)^)dt (4.64) 
f=0 

In order to evaluate the integral terms of equations (4.61) through (4.64), the 

integration interval is once again split into sub-intervals such that the PN sequence 

[z„=a^+Jb^ is constant over the sub-intervals, leaving behind only the cosine and sine 

expressions. In conjunction with Figure 4.3, this can be represented as, 

''' (t-l) (w+wrc 
/ ( — /  (.—m (4-65) 
t=0 t=HTg nr^*AT 

Next we need to evaluate the integrals containing cosine and sine expressions over the 

two sub-intervals. This leads to the following four results. 
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iiTJ+AT 
f /o XJ. sm(2a)^r^+2a)„AT)-sin(2<a^rtr^) 
I cos(2cii^f)<w=-

(4.66) 
sin(2a>oAT) 

2co O 

_ cos(2(o^nr^)-cos(2«„nr^+2&)^Ai:) 
I sm(2o>„nar= 

J 2,(0 I A ti-l\ t^nT^ o (4.67) 
[1-COS(2(I)OAT)] 

2(0^ 

"̂7̂ ' sm[2(o//i+l)rj-sm(2o)̂ /i7;+2o)̂ AT) 
J cos(2(oJ)dt= 

n^AT (4.68) 
sin(2o)gAT) 

2(0^ 

"TsmCl<.J)d>^ cos(2,.^r,.2a,.Air)- cos[2a.>^l)rj 

ht;.!, ° (4.69) 
[1 -cos(2(i)oAT)] 

2(0^ 

Applying the results from equations (4.66) through (4.69) in conjunction with equation 

(4.65) reduces the four integrals of equations (4.61) to (4.64) as. 

cos(a)„x)sm(2(i)„ A t) ̂  

"=1 
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sin(a)„T)[l-cos(2(D„AT)]^ 
E -KK^*xyK^n*d-KKJ ^ 
1=1 

COS(&)„T)[1-cos(2O)„AT)]^ . / t 1. X (Al-J^ 

B=1 

sin(&j^T)sm(2aj^AT)^ x . t A ^ r4 7^^ 

•^<^0 11=1 

For a bandpass pseudorandom waveform to be perfect, it is to be proved tiiat the 

expressions of equations (4.70) to (4.73) reduce to zero. Hence the final expression for 

<j)^(t) can be written as, 

T 

<t)^(T) =cos(WoT) f [a(t)a(t+x)+b(t)b(t+':)}dt 
^ (4.74) 

= <|)^(T)COS(a)„T) 

where, <j)^(T) represents the PACF of the baseband waveform. 

4.4.3 Perfect Waveform Design Approaches 

After developing a generalized approach for the synthesis and evaluation of the 

pseudorandom excitation waveform, and specifying a set of conditions that has to be met 

in order to get a perfect waveform design, this section presents four different waveform 

design approaches. Each approach is evaluated according to the generalized formulation 

of section 4.4.2 and tested for the set of conditions. Computer simulations for each of 

these approaches are discussed in the following chapter. 
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Approach 1: Amplitude Modulated Pseudorandom Waveform: This approach is 

based upon the transformation of a binary maximal-length sequence to a two-valued 

sequence, such that the resulting sequence exhibits perfect PACF properties. A binary 

sequence based on the two elements +1 and -1 can be considered as a complex sequence 

with constant magnitude and having phase angles 0 and 180 degrees. The new sequence 

described here has non-uniform magnitude and thus results into an amplitude-modulated 

waveform. This was the reason for calling the resulting waveform as an amplimde 

modulated pseudorandom waveform. 

Let {a„} be a periodic maximal-length sequence with period L, and consisting of 

two elements +I and -1. Based on the characteristics of maximal-length sequences, we 

can write the following. 

n=l »i=l 

11=1 «=i 

ford=0 
n«l 

The PACF of the sequence is given by, 

n~l 

Now if we consider a maximal-length sequence with a dc offset, i.e., {z^} = {a„+A}, the 

PACF of this sequence is given by. 
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J!=l 

n=i 

Using the identities of maximal-length sequence we get, 

PJd=0) =[L+2A +LA 2] (4.81) 

for the correlation sidelobes and, 

PJd*0)=[-U2A+LA^ (4.82) 

for the correlation peak. Setting equation (4.82) equal to zero and solving for the 

unknown constant A, we get, 

[LA^+2A-l\=Q (4-83) 

^ _ (-l±VZriT) (4 34) 
L 

Hence, if A is chosen according to the above relation, then the sequence {} will 

be based upon two elements A+l' & A-l', and the PACF of the sequence will be perfect. 

This means that, 

(4-85) 
fl = l 

ii«l 

In order to test for ±e perfect bandpass waveform, s(t), based on the above 

sequence, the following four expressions needs to be evaluated. 
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cos(a,,r)sm(2o..AT)^ . (4.87) 
» / ^ ^'*fC*n*d '^n n*d' ^ n n*d*l ^irn*d*V 

H=1 

sm(o,T)[l-cos(2o,.AT)l^ (a . ,-i i. , ,)-(a a ,-6 6 J (4-88) 
A / •> ^'*n n*d*l n*d*l' ^ n n*d n n*d^ 

«=1 

»l=l 

cos(o,.)[l-ccs(2.,Ax)l|. (4.90, 

n=l o 

Since the sequence under consideration is a real sequence, i.e., (b„ = 0), equations 

(4.89) and (4.90) reduce to zero and equations (4.87) and (4.88) can be rewritten as. 

«=1 

(4.92, 
1=1 

Applying the identity of equation (4.76) reduces equations (4.91) and (4.92) also to zero. 

Hence the bandpass waveform meets the necessary conditions for a perfect waveform. 

Energv Efficiency: The waveform generated through the above method will 

consist of two amplitude levels, (A+1) and (A-1). Each period of the waveform can be 

thought to consist of L segments of constant amplitude where each segment represents one 
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sequence symbol. Also, a sequence of length L will have (L+l)/2 symbols of amplitude 

(A+1) and (L-l)/2 symbols of amplitude (A-1). Hence, the energy efficiency achievable 

with this waveform is given by, 

(4 93) 
2(A*\fL 

For a 10th order sequence with L=1023, the constant A takes the value of (0.0303) and 

the energy efficiency comes out to 0.943 or 94%. 

Approach-2: Offset-Phase Modulated Pseudorandom Waveform: This approach is 

based upon the transformation of a binary maximal-length sequence to a complex two-

valued sequence, such that the resulting sequence exhibits perfect PACF properties. A 

binary sequence based on the two elements +1 and -1 can be considered as a complex 

sequence with phase angles 0 and 180 degrees. The new complex sequence described 

here has the phase angles 0 and 0, where 0 is slightly offset firom 180 degrees and that 

was the reason of naming it as an offset-phase sequence. 

If we consider a new sequence (Zn), by making the following transformation on 

the earlier described maximal-length sequence {x„}, 

2^=1, when x„ = +l, 

when x„ = -1, 

the PACF of the resulting complex sequence is given by. 

Based on the properties of maximal-length sequences, we can write, 

E 2 ^ 2 M d*0 (4.95) 
n=l n=l 

The product in the above equation can have only two values, 1 and g®. Hence 
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the equation reduces to. 

PJd*Q)=a.U^.e^ (4.96) 

where a and P are constants. For maximal-length sequences it can also be shown that. 

In order to set the magnitude of p^d*Q) equal to zero, we get the constraint equation as. 

which gives the value of the phase angle as, 

0=cos-^(-—) (4.99) 
L+1 

Hence, if 0 is chosen according to the above relation, then the sequence [z^ } will 

be based upon two elements '+1' & g®, and the PACF of the sequence will be perfect. 

This means that. 

= 2 2 
(4.97) 

(£-l)+(L+l).cos(0)=O (4.98) 

L 
(4.100) 

L 
PJid=0)=Ez„z*„=L (4.101) 

In order to test for the perfect bandpass waveform, s(t), based on the above 

sequence, the following four expressions needs to be evaluated. 
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2to_ „=i O 

sm(a)„T)[l-cos(2Q„AT)]^ ,, . r4 

n=l 

ainK.W.)^ (4..04, 

^^0 11=1 

cos(u„T)[l-cos(2a)„AT)]^ . . ,4,0';^ 

•^^^0 n=l 

To do that equation (4.95) is rewritten in terms of its real and imaginary parts as, 

T.K^n*d^^nKJ=T,(-^n^n*d*l^^nK*d*0 d*Q (4.106) 
n=l >1=1 

L L 

E(^«««>rf-^n^n.rf)=EC^« Wl^«n^n.rf.l) d*Q (^.107) 
rt=l 11=1 

These results when applied to equations (4.102) through (4.105) prove that the bandpass 

waveform, s(t), meets all the conditions of a perfect waveform. 

Energy Efficiency: The waveform generated through the above method will have 

constant amplitude, and therefore, it will have 100% energy efficiency. 

Approach 3: Polyphase Sequence based Excitation Waveform: Another class of 

pseudorandom sequences called polyphase sequences was investigated for possible 

application to SSUE technique. As the name indicates, polyphase sequences are complex 
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sequences based on more than two sequence elements, each element representing a 

different phase angle. Some well known classes of polyphase sequences are Golomb 

sequences, Frank sequences, PI, P2, P3 and P4 sequences [35]. Two important properties 

of polyphase sequences that made them attractive for the SSUE consideration were. 

Various classes of polyphase sequence were investigated for possible application to the 

SSUE technique. In the following the analysis of only one class, the polyphase P3 

sequences is presented. First, the method of sequence generation is described, followed 

by the waveform generation and testing of various necessary conditions. The simulation 

work related to the polyphase sequences is presented under section 5.2. 

Polvphase P3 Sequences: Any complex sequence, {z„}, of length L, can be 

represented as. 

For polyphase sequences, the sequence magnitude, r,, is unity and the sequence element, 

z„, is determined by the corresponding phase angle, o . Hence, 
II 

(a) perfect PACF properties 

(b) better bandpass performance 

aej (4.108) 

(4.109) 

For polyphase P3 sequences, the phase angles are given by the formula. 

L 
(4.110) 

The periodic autocorrelation function (PACF) of P3 sequence can be written as. 
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PJA'Y,e''-e-"- (4.111) 
11 = 1 

or alternately as. 

L 

n=l ^ 
(4.112) 

11=1 L, 

fKQd-d^ L -JZnnd 

ir=l 

The right hand side of the above equation reduces to zero for all nonzero lag values. 

Thus, 

(4.115) 

Thus the sequence exhibits perfect PACF properties, given by, 

d (4.117) 
11 = 1 

L 

««1 

In order to test for the perfect bandpass waveform, s(t), based on the above 

polyphase sequence, the following four expressions needs to be evaluated. 
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'*=1 

sm(a)^T)[l-cos(2a)„AT)]^ 
Z- E K^n*d*l-KK*d*lX<^n^n*d-KKJ 

n=l 

sinK.^go^A.)^ (^••20, 

«=I 

cos((O„T)[1-COS(2O>„AI:)]^ 

11=1 

It was found that, for the given polyphase sequence, equations (4.118) through 

(4.121) do not uniquely reduce to zero. These equations can be shown to be equal to zero 

only for lag values in integer multiples of the chip (symbol) interval. This fact was 

verified through the computer simulation analysis as discussed under chapter 5. 

Hence it was concluded that even though the polyphase sequences possess perfect 

PACF properties, a bandpass waveform derived from the polyphase sequence does not 

exhibit perfect PACF properties. This conclusion came as a bit of surprise as these results 

were not reported in the earlier work on the polyphase sequences [36, 37, 38, 39, 40]. A 

possible explanation of this apparent contradiction is that, in most of the radar and 

communication system analysis, the carrier frequency is assumed much larger than the 

bandwidth of the signal. Thus, various terms involving second harmonic of the carrier 

frequency are neglected. Such an assumption is not valid in case of the SSUE technique. 

Approach 4: Complementary Sequence ba.sed Waveform: An indirect approach to 

achieving a perfect PACF is through the use of what are called complementary sequences. 
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Complementary sequences comprise a sequence pair of equal length and having the 

property that the sum of the PACFs of the individual sequence results into a perfect 

fiinction. This is equivalent to saying that the PACF sidelobes of one sequence 

completely cancel the PACF sidelobes of the other sequence. Complementary sequences 

can be either binary or polyphase. Complementary pairs of binary sequences were 

originally considered by Golay [65]. Polyphase complementary sequences were reported 

by Sivaswamy [66]. If a pair of binary complementary sequences, each of length L/2, is 

represented by (al„} and (a2„}, their corresponding PACF is respectively given as, 

11=1 

<>2, (4.123) 
11=1 

By definition, for a pair of binary complementary sequences we can write, 

, for k-O (4.124) 

. M t'O (4.125) 

This implies that, 

M k*0 (4.126) 
n=l 

The translation of sequence to a baseband waveform in this case implies a pair of 

waveforms corresponding to the complementary sequence pair (al„},{a2„}, given as, 

ci(r)=5;ai„p(r-nr,) (4.127) 
11=1 
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m 
(4-128) 

#1=1 

Based on the generalized analysis of section 4.4.2, the PACFs of the two waveforms can 

be written as, 

«=1 «=1 

<I>c2C2CT)=AT5; (T^-^x)^a2„a2^ ^ j  (4-130) 
n=l 11=1 

For perfect cancellation of PACE sidelobes of c I (t) and c2(t), it is to be proved that. 

A tX; ai„ + a2^ '^n*d= 0 ^ ^ ̂  ^ 
/»=1 n=l 

This can be readily proved considering the identity of equation (4.126) for complementary 

sequences. 

For a binary complementary sequence pair, the corresponding bandpass waveforms 

are given as, 

si (t) =cl (Ocos(ci)^f) (4.132) 

s2{t) =c2(f)cos(o)^r) (4.133) 

For perfect cancellation of PACF sidelobes of sl(t) and s2(t), it is to be proved that, 

=0 > M (4-134) 

Again making use of the argument and generalized results of section 4.4.2, the set of 

conditions to prove the above results are. 
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cos((i)^T)sm(2(i)^ A T) ̂  
(4.135) 

n=l 

sin(co^T)(l -COS(2(O^AT)) 

2co O 

(4.136) 

11=1 

Applying the identity of equation (4.126), the left hand side of equations (4.135) and 

(4.136) reduce to zero. Hence the given pair of bandpass waveforms meet the necessary 

conditions for producing zero self-noise. 

Energy Efficiency: The complementary pair of waveforms generated through the 

above method will have constant amplitude. Hence, their energy efficiency will be 100%. 

Other Approaches: In addition to the earlier described approaches for perfect 

waveform generation, two other possibilities considered were. 

However, both the approaches were discarded because they did not meet at least one of 

the optimization criterion for SSUE waveform. The chirp waveform had unacceptably 

high signal-to-self-noise ratio, while the Huffman sequences had very low transmission 

efficiency, typically below 40%. 

4.4.4 Optimum Receiver 

In the SSUE system, the receiver performs two functions. One, to evaluate the 

crosscorrelation between the received waveform, and a reference waveform, in order to 

recover the system impulse function. Second, to suppress the random noise and provide 

maximum possible gain in the signal-to-random-noise ratio of the correlation signature. In 

(a) use of chirp waveform 

(b) use of Huffman sequences. 
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the following it is shown that a correlation filter that is matched to the transmit waveform 

performs these functions simultaneously and is, therefore, the optimum receiver. 

Matched Filter as an Optimum Receiver The SSUE received signal can be 

represented in matrix notation as. 

r=Sb+B. (4.137) 

where r is a column vector of length M, representing one period of the received signal, n 

is a column vector of the same length representing the random noise component of the 

received waveform. The impulse response of the composite system is represented by 

vector h. S is an MxM square matrix whose rows are based on the transmit vector s and 

each successive row is obtained by the circular shift of the elements of s. Hence, if s is 

given by. 

S. (Sj ^2 ^3 •" (4.138) 

The matrix S will be. 

'•Si ^2 c ^ ... 

^1 
s = 

^li-2 

. ^ 2  ^4 ^ / 

(4.139) 

A correlation filter matched to the transmit waveform can be represented as. 

(4.140) 

Here, S\ S represents the correlation matrix of vector s. If the transmit signal has perfect 

PACF, the correlation matrix S will be a diagonal Toeplitz matrix, and we get. 

ii=kb+s ̂ n. (4.141) 
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where k is a scaling constant. 

If the transmit signal, s, has a peak amplitude of A and the noise signal, n, has a 

variance ofo^ , then the SNR of the received signal, r, will be A^fa^- At the output of the 

correlator, as given by equation (4.141), the signal component will have a peak amplitude 

of MA, where M is the length of the signal vector s. Also, the noise component, s ̂ 3 of 

the correlator output will have a variance of • Hence the SNR at the correlator output 

will be This means that the SNR will improve by a factor of M, which 

corresponds to the maximum achievable SNR gain factor defined in section 4.3.3. 

4.5 Sub-Optimum SSUE Design 

In this case it is assumed that the transmitter is sub-optimum (Figure 4.4), i.e., the 

excitation waveform does not have a perfect PACF and hence self-noise exists. The 

problem then is how to design an optimum receiver in order to eliminate the self-noise 

while minimizing the reduction in SNR gain factor. 

Sub-opdmum 
Transmitter n(t) 

Opdmum 
Receiver 

h(t) 

pseudo-noise 
waveform 
generator 

mismatch 
correlation 

filter 

Transducer Transducer 

Figure 4.4: Sub-optimum SSUE model. 
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4.5.1 Deterministic Approach 

This approach is based on the fact that even though the PACF of the excitation 

waveform is not perfect, it is deterministic. Thus the self-noise is deterministic, which, in 

principle, should be possible to separate out through ±e use of an appropriate filter at the 

receiver. Luckily the correlation sidelobes for a maximal-length sequence based 

waveform (m-sequence derived waveform) are mathematically trackable and hence the 

resulting self-noise can be estimated. The expression for the PACF of an m-sequence 

based waveform is given by. 

where Tr(t) is a triangular pulse function defined in the time interval (-Tc< t < TJ as. 

(4.142) 

7K»)=l-niod[.^] ,>r (-T<t<T^ (4.143) 

Equation (4.142) can be rewritten as. 

(4.144) 

Recalling that the output of the correlator is given by. 

(4.145) 

Hence, 

=^^rKx)cos(a)oT) *h(x) - ̂ cos(cOOT) (4.146) 
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The Fourier transform of equation (4.146) gives its frequency domain equivalent 

representation, which transforms the convolution operation in to a multiplication operation. 

Hence the frequency-domain version of equation (4.146) is given as. 

where, £r((i>) represents the Fourier transform of fi(x) rr(ci>) represents the Fourier 

transform of Tr(x) • The self-noise term in the frequency-domain representation of 

equation (4.147) is a constant over the complete frequency range. The evaluation of the 

correlation signature function at gives. 

Hence the following algorithm can be applied for self-noise suppression. 

(1) Calculate the correlation signature using matched filter. 

(2) Calculate the FFT of the correlation signature. 

(3) Determine HicHf)-

(4) Correct the signature function in frequency domain. 

(5) Take inverse FFT to get back the signamre in time-domain. 

In a practical implementation of the above algorithm, the signature function will 

have an additive noise term, thus making the estimate of inaccurate. In that case, 

the algorithm will introduce a systematic noise term in the correlation signature. 

Computer simulation of this method of self-noise suppression is presented in section 5.3. 

4.5.2 Mismatched Filter Approach 

g(CJo)-Hg(-(Oo) 

2N 
(4.147) 

(4.148) 

This approach is based on the fact that a matched filter is an optimum receiver 

(according to the optimality criteria of section 4.3) only when the pseudorandom 

excitation waveform has perfect PACF. In the present case this condition is not true. 
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Therefore, an optimum filter to be developed for the present case can be called a 

mismatched filter (MMF). 

The problem now is, given an imperfect pseudorandom waveform, design a 

mismatched filter that results into zero self-noise, without significantly reducing the SNR 

gain factor. This is equivalent to saying, given a pseudorandom waveform s(t), find 

another waveform (or function) u(t), such that their PCCF function is perfect. As was 

done earlier in case of optimum design strategy, this problem can be translated to the 

corresponding sequence level. 

MMF design for an m-sequence: Let {a„} be a periodic maximal-length sequence 

with period L, and consisting of two elements +1 and -1. Based on the characteristics of 

maximal-length sequences, we can write the following, 

E " . " I  
l»=l B=1 

L = -1' M (4.150) 
n=l 

S = L , for d=0 (4-151) 
/l=l 

The periodic auto-correlation function (PACF) of the sequence is defined as. 

If we consider another maximal-length sequence {y„ }, having a dc offset B, i.e., 

{y„ } = {a„+B}, the periodic cross-correlation function (PCCF) of this sequence is given 

by. 

(4.155) 
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L 

#1=1 

#1=1 

Using the identities of equations (4.150), (4.151) & (4.152) we get, 

P^id*Q)=[-l*B\ (4.156) 

Setting equation (4.156) equal to zero and solving for the unknown constant B ,  we get, 

[5-1]= 0 (4.157) 

Hence, if B  is chosen according to the above relation, then the sequence {y„ } will 

be based upon two elements '+2' & '0', and the PCCF of the two sequences {a„} and {y„} 

will be perfect. This means that, 

(4158) 
#1=1 

P^(d=0)=[L^l] (4.159) 

SNR Gain Factor for a MMF: Let the BPSK transmit waveform based on a binary 

maximal-length sequence be represented in the vector notation as, 

fi=[Si ^2 -^3 ••• (4.160) 

The corresponding mismatch reference waveform based on a mismatch sequence as 

described above can be represented as, 

>2 >3 - yj (4.161) 

The expression for the SNR gain factor can be written as. 
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f U \2 

."'t y (4.162) 

Considering the mismatch sequence generation method, if the transmit signal, s, has an 

amplitude A, the mismatch waveform vector, y, will have half the elements with 

amplitude 2A and rest of them will be zero. Thus the SNR gain becomes. 

2 

This shows that the SNR gain factor reduces by 3 dB for the case of above described 

mismatch filter approach to self-noise elimination. 

Generalized MMF Design: It was found that the maximal-length sequences are not 

ideally suited for the application of mismatch filter approach to self-noise elimination. 

The above mentioned 3 dB loss can be reduced if we choose a different sequence. In 

order to determine a mismatch sequence corresponding to any given sequence, a more 

general problem formulation is required and is presented as follows. Let a sequence, {c„} 

be represented as. 

(4.163) 

^ (^0 ''I ^2 ••• (4.164) 

and the desired mismatch sequence as. 

w=(Wo Wj Wj ... (4.165) 

The PCCF of the two sequences is given as. 

L 
(4.166) 
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11=1 
(4.167) 

Equation (4.167) in matrix form can be written as, 

C.w=g 

where C is a cyclic Toeplitz matrix of the form. 

C = 

^2 0^ ••• 

••• ^ii-2 

\ 2 ••• 

and. 

Equation (4.168) can be written as. 

g=(i 0 0 0 .y 

(4.168) 

(4.169) 

(4.170) 

(4.171) 

Hence if C is a non-singular matrix, it is always possible to find w using the above 

equation. In reference [67] it is shown that for any length L, there exists at least one 

binary sequence c for which the MMF w can be calculated using the above procedure. 

Sequences with SNR loss as low as 0.2 dB are reported. However, it appears that, no 

systematic procedure exists to find the "best" sequence c and its corresponding MMF w, 

for a given length. There has been considerable work in this area as reported in [68, 69, 

70]. For the present research work it was decided not to pursue this area further and to 

accept the 3 dB loss of the maximal-length sequence. 



www.manaraa.com

4.5.3 QOK Approach 

80 

This approach is a variation of the mismatch filter concept. If the transmit 

waveform and the mismatch reference waveform are interchanged, the transmit waveform 

can be considered as an equivalent of the on-off keying (OOK) technique of 

communication systems and that is why this approach is given the name of OOK 

approach. This approach is beneficial in applications where the system operation is 

average power limited. Thus if the maximum transmit signal amplitude in case of a 

BPSK waveform is A, the OOK approach can operate at a peak amplitude of y/2A 

to deliver the same average power. 

4.6 Optimum Design of Bandwidth Constrained SSUE System 

A practical SSUE system is always bandlimited, mainly because of the bandlimited 

response of the ultrasonic transmitting and receiving transducers. As indicated earlier, 

there are two consequences of this practical constraint. The loss of resolution of the 

measured signature function and the loss of high frequency features of the true impulse 

response. Unfortunately, there is not much that can be done in terms of recovering the 

high frequency characteristics of the system impulse response. A loss of resolution is also 

inevitable. The best that can be done is to minimize the degradation in resolution for a 

given system bandwidth. The system design criterion discussed in the previous section do 

not provide optimum resolution under the bandwidth constraint. This section discusses the 

optimum waveform designs for the bandwidth constrained SSUE system. 

4.6.1 Ultrasonic Transducer's Frequencv Characteristics 

Ultrasonic transducers typically have a bandpass characteristics and the bandwidth 

of the passband varies according to the specific transducer design and intended 
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application. For the SSUE applications, transducers with large passband width are 

desirable. Most of the wideband transducers commercially available have a passband 

center frequency-to-bandwidth ratio of about two. Hence a transducer with the center 

frequency of 5 MHz covers a frequency range starting from almost DC to about 10 MHz 

(Figure 4.5). 

4.6.2 Spectral Characteristics of SSUE excitation waveform 

In the SSUE transmitter (Figure 4.2), the modulator translates the frequency 

spectrum of the baseband waveform, c(t), to the center frequency of the transducer 

spectrum. Hence, the main lobe of the excitation signal spectrum is aligned with the 

transducer passband. Also, the width of the spectral mainlobe is tailored to match to the 

width of the transducer passband (Figure 4.6). This is done by controlling the length of 

the signalling waveform p(t). However as the signal passes through the transducer, its 

spectral sidelobes gets filtered which correspond to the distortion of the waveform in the 

time domain and the broadening of the PACF mainlobe in the correlation domain. 

With reference to Figure 4.2, the PN excitation waveform, s(t) can be written as. 

-to 

•30 

£ -40 

•50 

•60 

-70 

•80 
3.75 5.0 ISO too 8.75 

frequency, MHz 

Figure 4.5: Typical frequency characteristics of a wideband ultrasonic transducer. 
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Figure 4.6: Spectrum of SSUE excitation waveform based on rectangular pulse function. 

s(t) =c(t)cos(2-Kff/) (4.172) 

where, 

c(t)=z„p(t-nT^ (4.173) 

If the power spectrum of the bandpass waveform, s(t), is represented by S^Cf) and the 

power spectrum of the baseband waveform, c(t), is represented by Sc(f), their inter-relation 

is given by, 

(4.174) 

If the sequence {z„} is perfect, then S<.(f) is given by. 

\ p J 
(4.175) 

where Tp is the duration of the rectangular pulse function p(t). Thus, the spectrum of the 
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excitation waveform, s(t), will have a well known sync squared envelope with first 

spectral sidelobe level only -13 dB lower than the mainlobe. 

4.6.3 Optimalitv Criteria 

The relation between the PACF of the excitation waveform and the measured 

correlation signature is given by. 

This indicates that the resolution of the measured correlation signature is directly related 

to its autocorrelation properties. In particular, the width of the autocorrelation mainlobe 

determines the overall signal resolution. 

For bandlimited pseudo-random waveforms, the width of autocorrelation mainlobe 

is inversely proportional to the signal bandwidth. If the bandwidth is fixed then the 

autocorrelation mainlobes of different waveforms can be compared. Hence, the 

autocorrelation mainlobe width serves as the optimization criteria. It is desired to achieve 

a dynamic range of >80 dB, so that a very weak flaw signal in close vicinity of a strong 

(backwall) signal could be detected. Therefore, correlation mainlobe width at -80 dB 

level is chosen as the resolution measure of the SSUE system. 

4.6.4 Waveform Design Approach 

A rectangular pulse function has a relatively larger energy in its spectral sidelobes 

(Table 4.1). It, therefore, gets severely distorted while passing through the bandlimited 

system, and results into the broadening of the peaks in the measured correlation signature. 

A different pulse function that has most of its energy concentrated in its spectral mainlobe 

will undergo lesser distortion and the corresponding correlation signature will have better 

resolution. Thus, the optimum waveform is one that has minimum fraction of energy in 

the sidelobes compared to the mainlobe of its frequency spectmm. 
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This problem is analogous to the design of a timelimited function whose frequency 

spectrum is a window function having certain desirable properties [70]. Some popular 

functions in this category are Hanning function, Hamming function, and Blackman 

function. The following table compares the performance of some of the well-known pulse 

functions. 

Table 4.1; Comparison of various candidate pulse functions. 

Pulse Function Highest Sidelobe Level Sidelobe Falloff Rate 

Recatagular -13 dB -6 dB 

Hanning -32 dB -18 dB 

Hamming -43 dB -6 dB 

Blackman -58 dB -18 dB 

Exact Blackman -68 dB -6 dB 

Blackman-Harris -72 dB -6 dB 

The exact comparison of these pulse functions should be done on the basis of their 

ratios of total energy to the spectral sidelobe energy. However, this figure was not readily 

available so the two related parameters, highest sidelobe level and the sidelobe falloff rate 

were used instead. The table indicates that the Blackman pulse functions are expected to 

give the best resolution. A detailed simulation analysis of these pulse functions and their 

effect on the resolution of the correlation signature is performed in Chapter 5 under 

section 5.4. 
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4.7 Summaiy and Comparison 

The optimality criteria for a practical SSUE system is defined. There are four 

basic areas of optimization, (1) signal-to-random-noise ratio, (2) signal-to-self-noise 

ratio, (3) transmission efficiency, and (4) correlation signature resolution. The first three 

are interdependent, hence their optimization is considered first. Later, the optimization in 

resolution is carried out. 

Two strategies of system optimization were pursed. First, the optimum system 

design strategy, in which both ±e transmitter and the receiver were optimum. Second, a 

sub-optimum system design strategy, where the transmitter was sub-optimum, but the 

receiver was optinnized, taking into account the sub-optimality of the transmitter. 

Under the optimum system design strategy, four different approaches were 

considered, these are, 

(a) amplitude modulated waveform approach, 

(b) offset-phase modulated waveform approach, 

(c) polyphase sequence based waveform approach, 

(d) complementary sequence based waveform approach. 

It was shown that except for approach (d), all other approaches produce theoretically 

optimum results. Under the sub-optimum design strategy, three different approaches were 

considered, these are, 

(a) deterministic approach, 

(b) mismatch filter approach, 

(c) on-off keyed waveform approach. 

Even though these three approaches are not theoretically optimum, a common feature of 

all of them is zero self-noise. 

Finally, for the optimization in resolution, the bandwidth constraint imposed by the 

ultrasonic transducers was considered and an improved waveform design, resulting in 

lesser out of band energy is presented. 
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Various system design approaches developed in this chapter can be compared on 

the basis of their energy efficiency and other characteristics as per Table 4.2. 

Table 4.2: Comparison of different design approaches. 

Waveform Design Approach 
Energy 

Efficiency 

Dynamic Range 

Limiting Factor 

SNR 

Gain 

Binary-phase modulation approach 100% self-noise L 

Amplitude modulation approach 94% random-noise L 

Offset-phase modulation approach 100% random-noise L 

Complementary sequence approach 100% random-noise L 

Mismatch filter based approach 100% random-noise L/2 

On-off modulation approach 50% random-noise L/2 
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CHAPTER 5 SIMULATION ANALYSIS 

This chapter presents the simulation work performed to verify the theoretical 

benefits of the SSUE approach over the conventional ultrasonic correlation system 

approach. Also, the simulation analysis of various approaches for SSUE system design 

developed in the previous chapter was carried out. Simulations were first performed at 

the baseband and then at the passband level. The effects of a bandlimited system and 

various waveform designs to enhance the resolution were also simulated. The simulation 

analysis was performed on IBM PC using the Matlab software environment. A 10th order 

maximal length sequence was chosen as a reference. 

5.1 Self-noise Analysis of Conventional Coirelation Systems 

It was stated earlier under section 3.4 that the conventional ultrasonic correlation 

systems employ an expanded-pulse and their performance is based upon the linear 

autocorrelation properties of the pseudorandom excitation waveform. The linear 

autocorrelation sidelobes result into what is called the system self-noise. On the other 

hand, the performance of a periodic correlation system is governed by the periodic 

autocorrelation properties of its excitation waveform. This section presents the simulation 

study of self-noise effects of the two types of correlation systems. 

5.1.1 Simulation details 

The linear autocorrelation function (LACF) and the periodic autocorrelation 

(PACF) of a 10th order maximal-length sequence (ml-sequence) and the corresponding 

bandpass waveform are presented in Figures 5.1 through 5.4. 
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Figure 5.1: LACF of a 10th order maximal-length sequence. 
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Figure 5.2: LACF of mi-sequence based bandpass waveform. 
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Figure 5.3: PACF of a 10th order maximal-length sequence. 
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Figure 5.4: PACF of ml-sequence based bandpass waveform. 
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The bandpass waveforms generated for these simulations had one carrier cycle per 

chip (symbol) interval, and each chip consists of 16 samples. Two things can be observed 

through the comparison of Figures 5.1 through 5.4. 

(a) the non-zero lag autocorrelation values of the sequence result into 

the corresponding waveform autocorrelation sidelobes, 

(b) the LACF sidelobes are much larger than the PACE sidelobes. 

In order to visualize the effect of the autocorrelation sidelobes in a correlation 

system, two simulation tests were performed. In test-1, an impulse response fiinction with 

moderate dynamic range was selected. The impulse response model consists of five signal 

components, with each successive component 6 dB weaker (Figure 5.5). For test-2, an 

impulse response function with a large dynamic range was selected. The impulse 

response model in this case consists of four signal components, with each successive 

component 20 dB weaker (Figure 5.10). In both cases random Gaussian noise was 

gradually increased from zero to until the random noise level exceeds the self-noise level. 

For each noise level, impulse response estimates using the expanded-pulse correlation 

technique and the periodic correlation technique were calculated. 

Simulation results corresponding to two cases are presented. One, when the 

random noise level is lower than the self-noise level. This condition is represented by 

(SNR^ < SNRj). Here, the system performance is determined by the self-noise level. 

Second, when the random noise level is higher than the self-noise level. This condition is 

represented by (SNR^ > SNR,). Here, the system performance is determined by the 

random-noise level. Figures 5.6 and 5.8 give the expanded-pulse correlation system 

measurements for the two cases of test-1, while Figures 5.7 and 5.9 give the periodic 

correlation system measurements for the two cases, again of test-1. Figure 5.10 represent 

the impulse response function used for test-2. The results of test-2 are shown in Figures 

5.11 and 5.13 for the expanded-pulse correlation system, and in Figures 5.12 and 5.14 for 

the periodic correlation system. 
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Figure 5.5: Test-1 impulse response. 
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Figure 5.6: Expanded-pulse correlation system measurement (SNR^ < SNR^). 
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Figure 5.7: Periodic correlation system measurement (SNR^ < SNR,). 
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Figure 5.8: Expanded-pulse correlation system measurement (SNR^ > SNRJ. 
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Figure 5.9: Periodic correlation system measurement (SNR,. > SNR,). 
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Figure 5.10: Test-2 impulse response. 
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Figure 5.11: Expanded-pulse correlation system measurement (SNR^ < SNRJ. 
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Figure 5.12: Periodic correlation system measurement (SNR^ < SNR^). 
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Figure 5.13: Expanded-pulse correlation system measurement (SNR^ > SNR,). 
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Figure 5.14: Periodic correlation system measurement (SNR^ > SNR,). 
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5.1.2 Discussion / Conclusion 

Following observations are made based on the test results presented in Figures 5.6 

through 5.9 and Figures 5.11 through 5.14. 

(a) For low levels of random noise in test-1, the expanded-pulse correlation 

system successfully detected all the components of the impulse response. This was 

possible because the system self-noise level was around -40 dB whereas the weakest 

component of the impulse response was at -24 dB (Figure 5.6). 

(b) For the same test conditions, the periodic correlation system produced better 

measurement. The system self-noise level in this case is around -60 dB (Figure 5.7). 

(c) When the random noise level exceeds the self-noise level, the two systems 

give equivalent performance, which is determined by the signal-to-random-noise ratio 

(Figures 5.8 and 5.9). 

(d) For low levels of random noise in test-2, the expanded-pulse correlation 

system could only detect the first two components of the impulse response. This was 

because the other components fell below the system self-noise level, which was around -

40 dB (Figure 5.11). 

(e) For the same test conditions, the periodic correlation system performed better. 

In this case, the system could clearly detect the first three components of the impulse 

response. The other weaker components fell below the self-noise level, which was around 

-60 dB (Figure 5.12). 

(0 When the random noise level exceeds the self-noise level, the two systems 

give equivalent performance, which is determined by the signal-to-random-noise ratio 

(Figures 5.13 and 5.14). 

Two conclusions can be drawn from the above observations: 

(a) For applications with poor signal-to-random-noise ratios, self-noise does not 

limit the system performance and hence either type of correlation system is equally good 

(or bad). 

(b) Periodic correlation systems perform better than the expanded-pulse correlation 
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systems where self-noise is the perforaiance limiting factor. 

It is to be noted that, Test-2 is a more realistic simulation of a practical ultrasonic 

NDE system. This is because the signal component from various object surfaces is 

usually orders of magnitude larger than the weak signal component representative of a 

flaw. Hence, in general, the periodic correlation technique is superior. Another 

conclusion that can be drawn from the test-2 result of Figure 5.13 is that, the self-noise 

level sets the fundamental limit on the achievable dynamic range, which is -60 dB in the 

present case. Hence, a further improvement in the dynamic range can only be possible by 

employing some method of self-noise suppression. 

5.2 Optimum SSUE Simulation 

In Chapter 4, various optimum SSUE system design approaches were developed. 

This section presents the simulation analysis of those approaches. The PACF of the 

sequence and the corresponding bandpass waveform is presented for the following 

waveform design approaches: 

(a) Complementary sequence based waveform design. Figures 5.15 and 5.16. 

(b) Polyphase sequence based waveform design. Figures 5.17 and 5.18. 

(c) Amplitude modulated waveform design. Figures 5.19 and 5.20. 

(d) Offset-phase modulated waveform design. Figures 5.21 and 5.22. 

5.2.1 Discussion / Conclusion 

The sequence PACF of all the four types of sequences was found perfect. 

However, it was observed that even though the Polyphase sequences had perfect PACF, 

the PACF of corresponding baseband waveform was not perfect. The performance of the 

other approaches was almost identical. Considering that the Complementaiy sequence 

approach is much more complicated to implement, we are left with the two optimum 

waveform design options of (c) and (d) above. 
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Figure 5.15: PACF of Complementary sequence. 
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Figure 5.16: PACF of Complementary sequence based bandpass waveform. 
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Figure 5.17: PACF of Polyphase sequence. 
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Figure 5.18: PACF of Polyphase sequence based bandpass waveform. 
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Figure 5.19: PACF of AM sequence. 
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Figure 5.20: PACF of AM sequence based bandpass waveform. 
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Figure 5.21: PACF of offset-phase sequence. 
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Figure 5.22; PACF of offset-phase sequence based bandpass waveform. 
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Next, the impulse response estimates corresponding to the amplitude modulated 

waveform approach (Figure 5.23) and the offset-phase modulated waveform approach 

(Figure 5.24) were evaluated assuming zero random noise, and it was verified that these 

two approaches completely eliminate the self-noise. 

5.3 Sub-Optimum SSUE Simulation 

In addition to the optimum SSUE system design approaches, a few sub-optimum 

approaches were also pursued in Chapter 4. This section presents the simulation analysis 

of two of those approaches. 

5.3.1 Deterministic Approach 

This approach is based on the estimation of self-noise component of the measured 

correlation signature and the subtraction of this component from the signature. The 

ultrasonic correlation signature is represented as, 

<i)^(T) =A(T) (5.1) 

So the goal is to make an estimate of N5(t). The test impulse response of Figure 5.10 was 

used to model this approach. The transmit waveform, s(t), was the BPSK signal based on 

a 10th order maximal-length sequence. The received signal, r(t), was simulated as, 

r(t)=s(t)*h(t)+n(t) (5.2) 

where, n(t) represents the additive Gaussian noise. After determining the correlation 

signature, the self-noise component of the signature was estimated using the algorithm of 

section 4.5.1 and removed from the signature. It was found that under low noise 

conditions, the algorithm works well (Figure 5.25). However, as the additive noise level 

increases, accurate estimation of self-noise becomes difficult. 
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Figure 5.23: Impulse response estimate using amplitude modulated wavefomi. 
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Figure 5.24: Impulse response estimate using offset-phase modulated waveform. 
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Figure 5.25: Impulse response estimate using the deterministic approach. 

Another short-coming of this method is that it requires complete correlation 

signature for the estimation of self-noise and hence the partial evaluation of correlation 

signature (range gating of the signature) is not possible. 

5.3.2 Mismatched Filter Approach 

In this approach, the mismatch filter corresponding to the transmitted BPSK 

waveform, s(t), was developed. The PCCF of the transmitted signal, s(t), and the 

mismatch waveform is shown in Figure 5.26. The received signal, r(t), was generated as 

earlier and the crosscorrelation signature was calculated. The simulation results indicated 

complete suppression of self-noise (Figure 5.26), however, the random noise floor was 

about 6 dB higher than the equivalent cases of various optimum design approaches 

(Figure 5.27). 
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Figure 5.26: PCCF of transmit waveform and mismatch filter. 
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Figure 5.27; Impulse response estimate using the mismatch filter approach. 
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A practical SSUE system is always bandlimited, mainly because of the frequency 

selective response of the ultrasonic transducers. Hence, the spectral characteristics of the 

excitation waveform play an important role in achieving greater resolution in the measured 

ultrasonic correlation signature. Theoretical analysis dealing with the optimization of 

SSUE system with respect to signature resolution was carried out under section 4.6. This 

section presents the simulation results based on various pulse functions. The distortion of 

transmitted waveform due to the bandlimiting effect and the corresponding effect on the 

PACF function is compared. 

5.4.1 Simulation Details 

The effect of bandlimited channel on the correlation signature is first simulated. 

The undistorted baseband waveform, based on rectangular pulse function, is shown in 

Figure 5.28. There are 40 samples in each chip of the waveform, which means that, 

ideally, its PACF should have a mainlobe width of less than 80 samples. The PACF of 

this waveform is shown in Figure 5.29, and its mainlobe width at -80 dB level is about 80 

samples. The distortion effect on the waveform due to bandlimiting is shown in Figure 

5.30, and the PACF of the bandlimited waveform is given in Figure 5.31. The waveform 

exhibits ringing effect at the transition points due to the filtering of high frequency 

components. There is a drastic degradation of the PACF function. The PACF mainlobe 

width at -80 dB level is about 160 samples, twice that of the undistorted case. Next, 

various pulse function were considered for the generation of pseudorandom waveform. 

These are: 

(a) Rectangular pulse function, given by, 

/7(A:)=1 (5.3) 

(b) Hanning pulse function, given by. 
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Figure 5.28: Baseband pseudorandom waveform based on rectangular pulse function. 
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Figure 5.29: PACF mainlobe of waveform of Figure (5.28). 



www.manaraa.com

108 

1 

l/wvj 1/vw^ 

1 1 

^^\/\AAAA/\A/V\AA^\/^ 
• 

50 100 150 200 250 300 350 -ttX) 

discrete dme. samples 

Figure 5.30: Bandlimited pseudorandom waveform based on rectangular pulse function. 

-20 

-40 
a 

.= -60 

mainlobe 
width = 

ISO samples 
-80 

-100 

-120 

-140 
-200 -ISO -100 -50 0 150 50 100 200 

coneiaiion lag. samples 
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=1 -cosC2,ick/N) (5.4) 

(c) Hamming pulse function, given by, 

p{k) =.54-.46 cos(2itit/^ (5.5) 

(d) Blackman pulse function, given by, 

p(k) =.42 -.5 cos(2itklN) +.08 cos(4icit/iV) (5 -6) 

(e) Exact Blackman pulse function [71], given by, 

_ 7938 9240 .Ink. 1430 A-nk. p(fe) = cos( )+ cos( ) (5.7) 
 ̂ 18608 18608 N 18608 N 

(f) Blackman-Harris pulse function [71], given by, 

=0.42323-0.49755 cos(^)+0.07922 cos(-^) (5.8) 

where, k = 0, I, 2, ... (N-I) and N is the length of the pulse function in samples. The 

amplitude spectrum of these pulse functions is shown in Figures 5.32 through 5.37. 

Different pseudorandom waveforms based on the above pulse functions were generated 

and the degradation of PACF mainlobe due to bandlimiting was studied. 

Finally, SSUE system simulations were carried out to demonstrate the 

improvement in the resolution of ultrasonic correlation signature through the use of 

different pulse functions. A test impulse response with two reflection components was 

chosen. The backwall reflection was at a lag of 60 samples, while the second reflection 

(corresponding to a small flaw) was at a lag of 40 samples. The second reflection 

component was chosen to be 80 dB weaker than the backwall component. The 

simulations were performed under zero random noise conditions. The correlation 

signatures corresponding to the six cases are presented in Figures 5.38 through 5.43. It 

can be seen that the flaw reflection is not visible at all in Figure 5.38, where as, the two 
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Figure 5.32: Magnitude spectrum of rectangular pulse function. 
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Figure 5.33; Magnitude spectrum of Manning pulse function. 
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Figure 5.34; Magnitude spectrum of Hamming pulse function. 
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Figure 5.35: Magnitude spectrum of Blackman pulse function. 
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Figure 5.36: Magnitude spectrum of exact Blackman pulse function. 
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Figure 5.40: Correlation signature from Hamming pulse function. 
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Figure 5.41: Correlation signature from Blackman pulse function. 
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Figure 5.42: Correlation signature from exact Blackman pulse function. 
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Figure 5.43: Correlation signature from Blackman-Harris pulse function. 
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components can be clearly distinguished in Figure 5.43. There were a few other pulse 

functions reported in the literature [71], that have even better spectral characteristics than 

the ones discussed here. However, they provided very little improvement in the 

correlation signature, and were more difficult to implement, so they were discarded. 

5.5 Narrowband Inteiference Analysis 

It was theoretically proved in section 3.5 that the SSUE technique performs 

equivalent to the averaging technique under the assumption of uniform white noise. 

However, when this assumption is not valid, i.e., when the additive noise is narrowband 

and hence correlated, the performance of SSUE technique is superior to the averaging 

method. This section presents the simulation details and the results to verify the 

theoretically derived results. 

5.5.1 Modelling of Narrowband Noise 

Four types of Gaussian bandlimited white noise waveforms, Nl, N2, N3, and N4, 

were generated using the "RANDN" function of Matiab. The spectral bandwidths of these 

waveforms with respect to the SSUE system bandwidth, B, are, 

bandwidth of waveform Nl = B 

bandwidth of waveform N2 = B/8 

bandwidth of waveform N3 = B/64 

bandwidth of waveform N4 = B/512 

A sample realization of the four types of waveforms and their corresponding 

autocorrelation functions are given in Figures 5.44 to 5.47. The relation between the 

noise bandwidth and its autocorrelation function is clearly observable. As the noise 

bandwidth becomes smaller the autocorrelation function dies down less rapidly with 

respect to the correlation lag. 
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Figure 5.45: Noise waveform N2 and its autocorrelation function. 
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5.5.2 Effect of Bandlimited Noise on SSUE Signature 

The effect of bandlimited white noise on the ultrasonic correlation signature of the 

SSUE technique was simulated. The ideal impulse response shown earlier in Figure x 

was used for these simulations also. The SSUE signature estimates corresponding to the 

noise waveforms Nl, N2, N3, and N4 are given in Figures 5.48 to 5.51, respectively. 

It can be seen that the noise floor level in all the three estimates remain almost 

constant at around -45 dB. The spectral characteristics of the random noise component of 

the correlation signature, however, retains the spectral characteristics of the bandlimited 

additive white noise. 

5.5.3 Effect of Bandlimited Noise on Averaging Technique 

The performance of averaging technique under various bandlimited noise 

conditions was also simulated. The theoretical analysis of section 3.5 predicts that the 

noise floor level in the averaged waveform should increase as the additive noise becomes 

more and more narrow-bandlimited. The simulation results corresponding to the noise 

waveforms NI, N2, N3, and N4 are given in Figures 5.52 to 5.55, respectively. 

The results indicate that the variation in the noise floor level is not very apparent 

in the first three waveforms. However, it does shoot up drastically in the case of the 

noise waveform N4. A possible explanation of these results is that the correlation effect 

of the noise waveforms N2 and N3 die down significantly by the end of one acquisition 

frame. Since, in the coherent averaging process the corresponding samples of each frame 

are added, the correlation effect does not show up. If there are N samples per frame, it is 

the Nth autocorrelation lag value that will determine the correlation effect on the 

averaging process. 
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Figure 5.49: SSUE signature-2 

Figure 5.50: SSUE signature-3. Figure 5.51: SSUE signature-4. 
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Figure 5.54: Averaged waveform-3. Figure 5.55: Averaged waveform-4. 
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5.5.4 Discussion/Conclusions: 

Comparison of the simulation results of the SSUE technique and the averaging 

technique verifies the superiority of the SSUE under the conditions of narrowband signal 

interference. The performance measure was the signal to noise floor level. It has been 

shown that the performance of the SSUE technique remains fairly constant from the 

narrowband to wideband case of the interfering noise. For the wideband case, the 

performance of averaging technique is equivalent to that of the SSUE technique. The 

performance of averaging technique constantly drops from wideband to narrowband 

direction. It can be deduced that, in the limiting case of a sinusoidal interfering signal, 

the averaging technique is no better than the single pulse acquisition technique. 
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CHAPTER 6 SYSTEM DEVELOPMENT 

This chapter discusses the development of an optimized SSUE instrument and 

analyzes its performance. The effect of various noise sources and other non-ideal factors 

is studied and the practical limitations of the system are determined. Finally, an efficient 

design of the correlation filter is developed and its performance compared with the 

conventional correlator implementations. 

6.1 Fiist Generation SSUE Instniment 

The first generation SSUE instrument was a fairly straight forward implementation 

of the basic system block diagram given earlier in Figure 3.6. It used the binary phase 

shift keying (BPSK) approach for the generation of pseudorandom excitation waveform. 

Inspite of being less efficient and sub-optimum, it served the following important 

purposes, 

(a) It provided a proof of concept test for the SSUE technique. 

(b) It gave a starting point after which further refinements could be made. 

(c) It provided insight to certain technological limitations. 

Two approaches were pursued in the development of the first generation 

instrument [62]. First was based on the digital implementation of the transmitter and the 

receiver (Figure 6.1), while the second was based on the analog implementation of the 

transmitter and the receiver (Figure 6.2). In case of the digital implementation approach, 

called maximal-software approach (MSA), the excitation waveform was generated in the 

computer and downloaded to a waveform generator. On the receiver side, the received 

signal is captured and digitized through a digitizing oscilloscope and the digitized data 

transferred to the host computer. The correlator was implemented in the PC software. 
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In case of the analog implementation approach, called maximal-hardware approach 

(MHA), a baseband pseudorandom waveform was first generated in hardware and then 

modulated to a carrier signal in the double-balanced mixer, thus producing the bandpass 

pseudorandom excitation waveform. Also, the correlation receiver was implemented in 

the hardware. It was realized that, in the current developmental stage of SSUE, the digital 

implementation approach is better. This is because, 

(a) the digital or software approach is much more flexible, 

(b) the digital correlation receiver had much smaller implementation, 

losses than the analog one, 

(c) digital signal processing is becoming increasingly faster and cheaper. 

6.2 Optimized SSUE Oeveiopment 

The hardware setup of the maximal software approach (MSA) from the first 

generation SSUE instrument (Figure 6.1) was used as the testing platform for the 

implementation of various optimized system design approaches developed earlier under 

Chapter 4 and simulation tested under Chapter 5. The detail of system implementation 

and the test results are presented in this section. 

Five different system design approaches were implemented. These are, 

(a) Binary phase modulation based SSUE system 

(b) Amplitude modulation based SSUE system 

(c) Offset-phase modulation based SSUE system 

(d) Mismatched filter based SSUE system 

(e) On-Off modulation based SSUE system 

The binary phase modulation approach (a) was the starting point for the system 

optimization process. Hence it serves as the reference with which the performance of 

other approaches are compared. The next two approaches, (b) and (c), are the optimum 

system design approaches, while the last two, (d) and (e), are the suboptimum approaches. 

The results presented here correspond to pseudorandom excitation waveforms based upon 
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a 10th order maximal-length sequence having a sequence length of 1023 symbols. The 

carrier frequency used for the generation of the waveforms was 5 MHz, and the system 

bandwidth was 10 MHz. 

Two types of tests were performed corresponding to each approach. Test-1 

involved bypassing of the ultrasonic transducers and the test object. Hence the 

transmitted signal is directly fed to the spread-spectrum receiver (Figure 6.3). The idea of 

test-1 was to eliminate all the random variables associated with the test specimen and the 

conversion of electrical signal to acoustic signal. Test-2 represented an actual NDE 

situation and involves the conversion of electrical excitation waveform to ultrasonic 

excitation signal, propagation of ultrasound through the test material, and finally the 
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Figure 6.3: Instrument configuration for test-1 and test-2. 
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reception of acoustic signal by the receive transducer. The test specimen consisted of a 

plastic (Perspex) disc with .2 inch thickness and a diameter of .7 inches. The transducers 

used were of 5 MHz center frequency and a diameter of .5 inch. The transmit waveform 

had an amplitude of 10 volts peak-to-peak. 

The following figures (Figures 6.4 through 6.18) present the test results of each 

approach along with the representation of each excitation waveform. All the waveforms 

are based on the Blackman pulse function, in order to achieve optimum resolution. It can 

be observed that, the binary-phase modulated waveform (Figure 6.4) has all signal peaks 

of constant amplitude, whereas the cunplitude modulated waveform (Figure 6.7) has a 

variation in signal amplitude from one chip to another, even ±ough this variation is very 

small. The offset-phase modulated waveform (Figure 6.10) has chip-to-chip phase 

variations of 0° and 179.8°, however, it looks very similar to binary-phase modulation. 

The mismatch-filter approach uses the binary-phase modulated waveform (Figure 6.13) 

and the difference comes in the correlation filter. Finally, the on-off modulation 
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Figure 6.12: Test-2 correlation signature. 
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Figure 6.13: Excitation waveform for mismatched correlation filter approach. 
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approach, as the name implies, uses a waveform (Figure 6.16) that has zero amplitude 

corresponding to certain chips in the pseudorandom sequence. 

6.3 Peifonnance Analysis 

The test results of five different approaches to the SSUE system design are 

presented above. It was observed that in case of the binary phase modulation approach, 

the dynamic range of the measured ultrasonic correlation signature was limited by the 

system self-noise level. Hence for a 10th order maximal-length sequence based system 

the dynamic range is -60 dB (Figure 6.5). As a consequence of self-noise only the first 

seven reflection components can be clearly detected in the correlation signature of Figure 

6.6. In case of the amplitude modulation approach and the offset-phase modulation 

approach, the test results are very similar. Here, the theoretical and simulation results 

predict that there is no self-noise and the dynamic range of the correlation signature is 

determined by the system's random noise level. Thus for a 10th order maximal-length 

sequence based system, the dynamic range of about -80 dB was achieved (Figures 6.8 & 

6.11). This is a 20 dB improvement over the binary phase modulation approach. As a 

consequence of this 20 dB improvement in the dynamic range, the correlation signatures 

corresponding to test-2 now clearly show at least ten reflection components (Figures 6.9 & 

6.12). 

The mismatched filter approach and the on-off keying approach produced almost 

similar results (Figures 6.14 & 6.17). The dynamic range of the correlation signature was 

about 6 dB smaller than those of Figures 6.8 & 6.11. This can be attributed to the 6 dB 

lower SNR gain factor of the mismatched filter. An equivalent effect was observed in the 

test-2 results (Figures 6.15 & 6.18). 

It was, therefore, concluded that the amplitude modulated waveform approach and 

the offset-phase modulated approach represent the optimum SSUE designs. Even though 

the theory predicts that the amplitude modulated waveform approach has lower energy 

transmission efficiency, its effect in a practical system is unobserveable. 
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The output of the correlator in a SSUE system has been shown to be given by, 

=h(x) +N^(x) +Njiz) (6.1) 

where, iV^(T)is the self noise component and ^^(-c) is the random noise component of the 

measured correlation signature. 

6.4.1 Analysis of Self Noise 

Self noise is a result of non-ideal auto-correlation function, <|)^(t) . of the 

pseudorandom excitation signal. It is correlated with the input signal, s(t), and the 

impulse response, h(t). Magnitude of self noise depends on, (a) the period of the input 

signal, s(t), and, (b) the nature of h(t). If h(t) contains a strong component like a 

backwall reflection, the magnitude of Nj(x) can be large enough to mask a weaker 

component of h(t). This fact is evident from the test results presented earlier (Figure 

6.2.4). The self-noise is a result of nonideal PACF of the excitation waveform. In 

general, the self-noise is inversely proportional to the length of the pseudorandom 

sequence constituting the waveform. The exact level of self-noise depends on the type of 

sequence involved. 

6.4.2 Analvsis of Random Noise 

Various sources of random noise are, (a) electrical noise, (b) acoustic noise, (c) 

EMI noise and, (d) quantization noise. All noise components can be assumed to be 

uncorrelated with each other as well as with h(t) and s(t). If the sum of all the random 

noise sources is represented by n(t), having a variance of unity, the variance of will 
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be equal to the SNR gain factor and will depend on the period of the input signal, i.e., the 

extent of pulse compression. 

It is interesting to note that the self-noise, Njix). and the random noise, » 

components are uncorrelated to each other and hence the dynamic range of the measured 

correlation signature will be determined by the dominant component out of the two. Also. 

Ar/T)«l/L (6.2) 

and 

(6-3) 

where L is the length of the maximal-length sequence. Hence, the self-noise level goes 

down faster than the random noise level with the increase of sequence (Figure 6.19). This 

result suggests two things, (a) if in a particular measurement situation, the random noise 

level is dominant, the basic BPSK system will perform as well as a system employing one 

-60 

-70 

ffl -80 

t -90 

§ -100 
u 
c/3 

o -110 
c 

-120 

self-noise 

random noise 

10 12 14 16 18 20 
sequence order 

Figure 6.19: Effect of Sequence Length on Self-Noise and Random-Noise. 
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of the optimized approaches, and (b) one approach to solving the self-noise problem is to 

employ a longer sequence and thus an excitation waveform with longer period. Of course 

(b) is not a trivial thing to do as it involves greater system resources of storage capacity 

and processing power. 

6.4.3 Quantization Noise Analvsis 

Quantization noise is associated with the process of digitizing the received analog 

signal at the front end of a digital receiver. Since the digitization process involves 

mapping of the analog amplitudes of a waveform to a certain finite number of discrete 

levels, it results into truncation or roundoff error. This error in the quantization process 

can be represented as an additive noise term in the signal expression, i.e., 

r[n]=r(0+n,W (6-4) 

where r[n] is the digitized representation of the analog received signal r(t) and n^Ct) 

represents the quantization noise. In most practical situations certain assumptions can be 

made about the digitization process which make it possible to build a statistical model of 

the quantization noise. These assumptions are, 

(a) quantization noise is uncorrected with the quantized signal 

(b) quantization noise is uncorrected from one sample to another 

The first assumption is always valid for the situations when the input signal to the 

digitizer has no synchronization with the digitizer clock. In case of SSUE, however, this 

is not tme since the transmitter and the receiver are self synchronized by a common clock. 

The second condition that makes the assumption (a) valid is when the input signal has a 

random additive noise component that is uncorrelated with the signal itself. It is this 

second condition which is valid in case of the SSUE received signal, r(t). The expression 

for the received signal developed earlier is, 

r{t)=s(t)*h(t)+n(t) (6-5) 
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Here, n(t) is the additive random noise component that is a result of number of different 

phenomenon like acoustic noise, electronic noise, electromagnetic interference etc. In a 

way, n(t) acts like a dither signal that makes the quantization noise uncorrelated with the 

digitized signal. A natural consequence of the above discussion is the question that what 

minimum level of n(t) is required to validate the above assumption (a). The answer to 

this question was not rigorously pursued, however, it was found that as long as the 

amplitude of n(t) is comparable to the smallest quantization level of digitizer, assumption 

(a) remains valid. The second assumption (b) implies that the quantization noise is white. 

This assumption is strictly valid when the digitization is done near the Nicest rate. 

However, when the signal is greatly oversampled the consecutive samples start becoming 

correlated. 

After establishing the validity of the above assumptions, the quantization noise, 

nq(t), can be modeled as a random process with uniform distribution function in the 

interval -q/2 to +q/2 [72], where q is the smallest quantization level of digitizer. The 

variance of nq(t) is given by. 

For an eight bit quantizer q = 1/256, which gives the variance of -59 dB. If the received 

BPSK signal is considered to completely fill the digitizer, it represents a signal energy of 

-6 dB and the signal-to-quantization noise ratio of the digitized received signal, r[n], will 

then be 53 dB. For the excitation waveform based on a sequence of length L=1023, the 

SNR gain factor is 30 dB. Hence, the correlation signature will have a SNR^ of 83 dB. 

In a practical situation, the quzmtizer can not be completely filled and the digitizer 

perform slightly below their rated performance and hence a 3 to 6 dB of loss is expected. 

Another aspect of change in the statistics of the quantization noise, as it is 

processed through the correlator is the change in distribution from uniform to an almost 

Gaussian. This is because the correlator adds multiple samples of an uncorrelated 

uniformly distributed process and applying the central limit theorem [73], the output of 
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the correlator can be modeled as a Gaussian random process. This means that the noise 

floor level in the correlation signamre is governed by a 25, confidence interval. 

6.4.4 Effect of Master Clock Instabilitv 

The correlation processing in SSUE technique is equivalent to the coherent 

averaging process. Hence the system performance is highly dependent on the stability of 

its master clock. Conversely, the instability of system clock results into considerable 

reduction of the effective SNR gain factor. The clock instability can be generally 

categorized as (a) frequency drift, and (b) clock jitter. The major difference between the 

two is that the clock jitter is a random uncertainty in the clock transition time which is 

uncorrelated from one pulse to another, while the frequency drift is the random drift in the 

clock frequency that results into a gradual change in the clock period. 

Effect of Clock Jitter Clock jitter effects the digitization process in the SSUE 

receiver. Its effect on the digitized waveform is very similar to the quantization error. 

We start the analysis by recognizing digitization as a two step process, involving, 

(a) time sampling of analog waveform 

(b) discretization of signal amplitude 

The discretization of analog signal amplitude leads to the quantization noise that has been 

analyzed before. A random timing error (clock jitter) in the sampling of the analog 

waveform also results into an error term that can be regarded as noise. The random 

timing error can be modeled as a Gaussian process with sampling time as the random 

variable. This can be transformed into a random amplitude variable in the digitized 

waveform assuming a linear transformation (Figure 6.20). Thus the sampling error will 

result into a Gaussian noise in the digitized received signal and eventually as a Gaussian 

noise term in the correlation signature. If the jitter noise is smaller than the quantization 

noise, its effect will be hardly noticeable, however, when jitter noise exceeds the 

quantization noise, its effect on the correlation signature will be the reduction of effective 
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quantizer size. Thus the effect of quantizer size and the stability of sampling clock on the 

correlation signature are inter-related and an increase in quantizer size also requires an 

improved sampling clock stability. 

Effect of Clock Frequency Drift: The clock frequency drift effects the digitization 

process of the analog received signal, r(t). It is characterized as a random drift in the 

clock frequency that results into a gradual change in the sampling clock period. The drift 

is usually so slow that the sampling frequency can be considered constant during one 

measurement. The effect of frequency drift becomes prominent when two identical 
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Figure 6.20: Transformation of sampling clock jitter to a random noise component. 
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measurements are made with a time gap of several hours or a day. Frequency drift can be 

due to poor temperature compensation, voltage variation, or ageing. Following 

calculations are based on some typical numbers and provide a rough idea about the extent 

of clock drift problem in SSUE. 

Sampling clock frequency = 100 MHz 

Sampling clock period = 10 ns 

Specified clock drift rating = 1 ppm / day 

# of samples per period of correlation signamre = 100,000 

True sampling frequency on day-1 (f,) = 100,000,000 Hz 

True sampling frequency on day-2 (fj) = 100,000,100 Hz 

True length of correlation signature-1 = 100,000 / f, 

True length of correlation signature-2 = 100,000 / f. 

Difference of lengths of two signatures = 1 ns 

Percent error in sampling period = 10% 

Thus, if we compare two digitized correlation signatures sample by sample, the last 

few samples will have a sampling error of the order of 1 ns, which is about 10% for the 

sampling period of 10 ns. 

Two things can be deduced out of the above calculations. First, the longer the 

period of excitation waveform, the larger the effect of frequency drift will be. Second, a 

direct comparison of the correlation signatures taken at different times is not the best way 

of detecting an acoustic change in the test sample. 

6.5 System Limitatioiis 

In theory, SSUE technique is capable of providing arbitrarily high sensitivity of the 

measured ultrasonic correlation signature and it can be made interference tolerant to any 
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extant. However, in practice there is a limit beyond which the performance improvement 

becomes exceedingly difficult. This section discusses the technological limitations of 

SSUE system. 

6.5.1 Separate Transmit and Receive Transducers 

While the traditional pulse-echo ultrasonic technique typically uses a single 

transmitting and receiving transducer by time-sharing the transducer between the 

transmitter and the receiver, the SSUE technique can not do so. A time or frequency 

sharing of transducer in case of SSUE is not possible because the transmitter is 

continuously transmitting a periodic pseudorandom waveform and also the transmit and 

the receive waveforms occupy the same frequency spectrum. This, however, should not 

be regarded as a serious limitation of SSUE technique because of two reasons. Firstly, 

there are many ultrasonic NDE applications that require the transmit and the receive 

transducers to be separated by some distance or located at some angle with respect to each 

other, as is the case in pitch-catch measurements. Secondly, in present times the 

ultrasonic transducer manufacturing technology has significantly developed and it is 

feasible to manufacture two completely independent transducers in a single casing. 

6.5.2 Bandwidth Limitation of Ultrasonic Transducers 

The SSUE system features an excitation waveform with large time-bandwidth 

product. Unfortunately there is not much flexibility in terms of achievable system 

bandwidth, as that is limited by the bandlimited characteristics of the ultrasonic 

transducers. Hence, in order to increase the time-bandwidth product, only the time is a 

controllable variable, which means employing the excitation waveforms with longer 

period. The bandlimited characteristics of ultrasonic transducers may not be as serious a 
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limitation as it appears to be. This is because many engineering materials exhibit 

frequency selective acoustic characteristics and their nondestructive evaluation is often 

restricted to a certain band of frequencies. Thus it is very important to make an 

appropriate choice of transducer operating frequencies in order to match them to the 

characteristics of the test material. 

6.5.3 Average Power Limitation of Ultrasonic Transducers 

The ultrasonic transducers currently being used with the SSUE system are designed 

basically for pulsed mode of operation. Their construction is primarily based on the peak 

power limitation of the piezoelectric crystal. Hence their design is not optimized for the 

continuous mode of operation which requires heat dissipation considerations. As a result 

of this, the current operation of SSUE technique can not make fiill use of the available 

peak power capacity of the transducers. The transducers currently being used are peak 

power limited to about 300 volts, while for SSUE application they are only derived at a 

maximum peak-to-peak signal amplitude of 15 volts because of the average power 

dissipation considerations. 

6.5.4 Impulse Response Fold-over 

The governing equations of SSUE technique as developed in chapter 3 are based 

on the assumption that the system impulse response, h(t), is time limited between 

( 0 < t < To) and T(, is less than the period of the pseudorandom excitation waveform, Tp. 

If this condition is violated in a practical application, the phenomenon of impulse response 

fold-over will occur and there is no easy way to unfold the measured correlation signature 

to get a tme impulse response estimate. Hence, there is a need to exercise extreme care 

in applying SSUE technique to various test materials. Certain real life materials like 

aluminum have very small attenuation coefficients and hence their acoustic impulse 

response can have significantly large time duration before its amplitude drops to an almost 
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zero level. A particularly unique and interesting material often used for the calibration 

and testing of ultrasonic NDE instruments is silica (fused quartz). It offers almost 

negligible attenuation to acoustic signal. When SSUE technique was applied to 

interrogate a block of silica in the lab, without considering its impulse response duration, 

the measured correlation signature had multiple fold-overs in it and made no sense at all. 

6.5.5 Radiative Coupling Between the Transmitter and Receiver 

Ultrasonic transducers can be modeled as a capacitor connected at the end of a 

coaxial transmission line. Thus at high operating ft^quencies they act like an antenna. 

When the two transducers are placed close to one another the signal is radiatively coupled 

to the receiver. This results into a small signal component at almost zero lag value in the 

correlation signature. It was found through practical experience that certain types of 

transducers are better than others in terms of radiative shielding. For the pair of 

transducers used in the experimental tests of section 6.2, the radiative coupling effect is 

seen as a signal component close to zero lag with a peak amplitude of about -60 dB. 

While a small component of radiatively coupled signal is harmless as it can be easily 

identified due to its near zero lag characteristics, and separated out. It can be a problem 

when this undesirable signal component grows stronger than the true acoustic signal 

components, as the digitizer is then filled by the stronger unwanted signal component and 

the weak desired signal can not be digitized with sufficient resolution. Hence, while 

selecting a pair of ultrasonic transducers, its radiative shielding characteristics must be 

kept into consideration. 

6.6 Efficient Coirelator Design 

In the SSUE system, the correlator is the most computation intensive part of the 

overall system. The maximum size of the pseudorandom sequence that can be practically 

used is determined by two factors. 
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(a) memory size of the waveform generator, digitizer, 

and RAM in the PC 

(b) correlation processing speed 

The first factor is a hardware limitation and is directly associated with the equipment cost. 

However, the second factor is not purely cost dependent. The time required for the 

correlation processing depends on, (a) computational load of correlation processing 

algorithm, and (b) computer throughput. This means that the implementation of a 

correlation filter can be investigated in an attempt to reduce the computational load. This 

section presents various algorithms for implementing a periodic correlator and compares 

the computational load associated with each of the algorithms along with their limitations. 

6.6.1 Digital Correlator Implementation 

The earlier correlators were of analog type and their performance was relatively 

poor [74]. The present state-of-the-art correlators are DSP-based, with much improved 

performance. However, the process is still computation intensive and requires costly 

computational resources. Two main techniques exist for the implementation of a digital 

correlator. These are: 

a) Time-domain delay-multiply-add correlator (Figure 6.21) 

b) Frequency-domain FFT based correlator (Figure 6.22) 

While the time-domain approach is simple and straight forward, it performs poorer 

in terms of computational efficiency. However, there is a positive aspect of this approach 

also. Sometimes it is only a certain range of lag values for which the correlation results 

are of interest. For example, in case of the application of the SSUE technique for flaw 

detection, the portion of ultrasonic correlation signature after the first backwall reflection 

is not of much interest as a flaw signature is expected to show up before the first 

backwall component of the signature. For these kinds of applications, the time-domain 

approach of correlator implementation can tum out to be the best choice. 
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Figure 6.21: Basic correlator block diagram. 
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Figure 6.22: FFT-based correlator block diagram. 
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The frequency-domain approach is comparatively fast and efficient, though peiiiaps 

still not the optimum. This approach of correlator implementation is based on the relation 

between the convolution and the correlation functions, as discussed under section 2.1. In 

this approach, fast fourier transform (FFT) algorithm is used to determine the frequency 

spectra of the pseudorandom excitation waveform, S(f), and the received waveform, R(f). 

The complex multiplication of R(f) with the complex conjugate of S(f), gives the 

spectrum of periodic crosscorrelation function, <I>5j(f). An invers fourier transform (IFFT) 

of <I>sr(f) gives the desired correlation function, This approach computes the 

complete periodic crosscorrelation function all at once and does not provide any control 

over the partial evaluation of the desired correlation function. 

6.6.2 New Computationally Efficient Correlator 

A new method of DSP-based correlator implementation was investigated [75]. 

This method exploits the structural characteristics of a pseudo-random waveform based on 

the maximal-length sequence. The method can be applied for baseband or bandpass 

waveforms, and it can handle a wide range of modulation schemes and signalling 

structures. The new method eliminates various kinds of redundancies in the basic 

correlation process. The correlation operation is broken into pieces and transformed into a 

form where the benefits of fast Hadamard transform (FHT) are utilized [76]. The 

resulting data is regrouped and transformed back to the standard form (Figure 6.23). This 

method performs most of the mathematical operations in the fixed point arithmetic format, 

thereby saving lot of storage space and processing time. 

6.6.3 Performance Comparison 

If L is the length of the maximal-length sequence that constitutes the 

pseudorandom excitation waveform and there are N samples per symbol, one period of the 

waveform will consist of NL samples. Hence, the basic time-domain correlator will 
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Figure 6.23: Proposed correlator block diagram. 

require NL real multiplications and NL real additions, in order to calculate one correlation 

value. Second is the FFT-based approach, which requires, a) one FFT of length NL, b) 

one IFFT of length NL, and c) NL complex multiplications. These numbers, however, 

correspond to all the NL correlation values. Assuming that, 

a) one FFT requires NL log2(NL)  complex multiplications and about 

the same number of complex additions, 

b) one IFFT requires NL logj iNL)  complex multiplications and about 

the same number of complex additions, 

c) one complex multiplication requires four real multiplications and 

two real additions, 

d) one complex addition requires two real additions. 

This gives us the average of x real multiplications and y real additions for each correlation 

value. 

The proposed approach, on the average requires only N real multiplications and N 

log2(L) real additions for each correlation value. In general, L is much larger compared to 

N and therefore, the new approach is mostly dominated by additions. Table 6.1 compares 
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the computational requirements of the proposed approach with the existing approaches, 

taking L=l,000 and N=10. 

Table 6.1: Processing requirement per correlation value. 

Correlator Type # of real 

multiplications 

# of real 

additions 

1. Basic time-domain 10,000 10,000 

2. FFT-based 110 108 

3. Proposed approach 10 100 
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CHAPTER 7 SIGNATURE PROCESSING TECHNIQUES 

This chapter develops various signal processing techniques that can be applied to 

the ultrasonic correlation signature for the purpose of extracting useful information 

regarding various structural and material characteristics of the test specimen. 

7.1 Deconvolution of Measurement System Ejects 

In the SSUE the measured ultrasonic correlation signature, <j)^(T). represents an 

estimate of the composite system impulse response, h(t), which can be represented as the 

convolution of the test sample impulse response, h^Ct), and the measurement system 

impulse response, h^Ct), as shown in Figure 7.1. This can be written as, 

hit)=hj^)*hjit) (7.1) 

The measurement system impulse response, hj(t), is the undesirable part of the correlation 

signature. It contains the effect of various system components like the transmitting and 

the receiving transducers and the associated electronics. While it is possible to eliminate 

the adverse effects of electronic circuits by ensuring highly linear amplifiers with 

wideband response, the ultrasonic transducers represent a "bottleneck". Firstly their 

response is bandlimited and secondly they show dispersive behavior, both in terms of 

magnitude and phase. 

Ideally, it is desired to have hs(t) to be a delta function with some deterministic 

time delay tj, i.e.. 

(7.2) 



www.manaraa.com

152 

Test Object 
^ r(t) s(t) 

Receive Low noise 
Transducer Amplifier 

Transmit Power 
Amplifier Transducer 

h(t) 

h(t) Composite System Impulse Response 
ho(t) Test Object Impulse Response 
h,(t) Measurement System Impulse Response 

f -
1 h{t) 1 

1 
1 
1 

h,(t) h„(t) 

1 
1 

1 
1 

h,(t) h„(t) 

1 
1 

1 
1 

1 
J 

Figure 7.1: Impulse response model of ultrasonic NDE system. 

where t^ represents the measurement system propagation delay. In such case, the 

ultrasonic correlation signature can be written as. 

Since the ultrasonic correlation signature now represents the test object impulse response 

having a deterministic time shift t,, all the necessary information is preserved in the 

signature. In particular, the resolution and the relative positions of various signal 
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components are preserved. However, in reality, hjCt) gives both the magnitude and phase 

distortions. It is therefore important to eliminate the effects of the measuring system 

response from the ultrasonic correlation signature through a signal processing process 

generally referred as deconvolution. There are two important factors which indicate the 

significance of deconvolution processing of the measured ultrasonic correlation signature. 

These are, (a) resolution enhancement, and (b) system independence. 

As a result of magnitude and phase distortions of the transmitting and receiving 

transducers, the correlation peaks in the ultrasonic correlation signature become broader, 

thus lowering the resolution. Figure 7.2 compares the loss of resolution in the correlation 

signature as a result of non-ideal h,(t). If the ultrasonic correlation signature can be 
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Figure 7.2: Comparison of ideal and practical system correlation signatures. 
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processed to eliminate the undesired distortion effects, its resolution can be significantly 

improved. 

Since the unprocessed ultrasonic correlation signature includes the effect of the 

measurement system impulse response, its measurement can produce different results with 

different instmments and at different time. By applying the deconvolution processing, the 

ultrasonic correlation signature can become independent of the system characteristics, 

particularly of transducers. Transducers indicate significant variations from unit-to-unit 

and also long-term variations due to aging. 

7.1.1 Deconvolution Technique 

The above mentioned deconvolution problem falls under the general category of 

deterministic deconvolution, which assumes that a reasonably good estimate of the 

undesired impulse response component, hjCt) in this case, is available. Deterministic 

deconvolution can be considered as a two step process that includes, (a) estimation of 

hjCt), and (b) implementation of inverse filter. The estimation of h^Ct) is a crucial step, as 

if a fairly accurate estimate can be made, the second step of inverse filter implementation 

becomes relatively simple and straight forward. However, if the estimate is inaccurate or 

if it has poor SNR, the stability of the inverse filter becomes an important design 

consideration. Also, in that case, the deconvolution filter, if not well designed can further 

degrade the quality of measured ultrasonic correlation signature. 

Literature survey of a similar type of deconvolution processing for pulsed 

ultrasonic systems indicate two different methods of estimation of h^Ct) [77, 78]. One 

method uses the backwall reflection from a block of fused silica as an estimate of h^Ct). 

Since fused silica is considered nearly ideal propagation medium for ultrasound and the 

reflection of ultrasound from a smooth, polished parallel surface can be assumed perfect, 

the backwall reflection serves as a good estimate of h^Ct). The other method is based on 

the estimation of h^(t) from a known good sample, or from the known good portion of test 

sample, in case scanning of large area is involved. In certain applications a well isolated 
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backwall reflection can also provide a good estimate of hj(t). 

7.1.2 Inverse Filter Implementation 

A deconvolution filter can either be implemented as a post-correlation filter (Figure 

7.3) or as a pre-distortion filter (Figure 7.4). Each implementation has certain 

characteristic features. The post-correlation filter implementation is simple in the sense 

that the ultrasonic excitation waveform and the correlation processing remains unaffected. 

The drawback, however, is that the input to the deconvolution filter has a noise 

component, which results into the amplification of certain frequencies of the noise thus 

degrading the SNR. A pre-distortion filter approach is considered superior as it produces 

optimum SNR for all frequencies of the deconvolved signal spectrum. Also, the 

implementation of pre-distortion filter is relatively efficient. A pre-distortion filter can be 

Incorporated as a part of the excitation waveform generation process. Once the pre-

distorted waveform has been digitally generated, no additional processing is required 

during multiple correlation signature acquisitions. In case of post-correlation processing, 

however, each measured correlation signature has to be independently processed through 
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Figure 7.3: Post-correlation filter implementation. 
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Figure 7.4: Predistortion filter implementation. 

the deconvolution filter. Typically, the transducer spectrum is not uniform in the pass-

band. Hence, the SNR is not constant over all frequencies. The SNR is relatively poor at 

the bandedges. A disadvantage of the pre-distortion filter in case of the SSUE system is 

that it takes away the control over the transmit signal peak amplitude characteristics and 

the excitation waveform no longer can maintain a constant amplitude thus reducing the 

transmission efficiency. 

7.1.3 Filter Implementation Results 

The results of a post-correlation filter implementation are presented. First, the 

measurement system impulse response, hs(t), was measured. It is shown in Figure 7.5. 

The magnitude and phase spectra of this measured impulse response were calculated and 

is shown in Figures 7.6 and 7.7. It can be seen from these figures that the measurement 

system exhibits both the magnimde and phase distortions. An inverse filter was developed 

in frequency domain whose magnitude spectrum is shown in Figure 7.8. Figures 7.9 & 

7.10 show a correlation signature measurement with and without the deconvolution filter. 

The effectiveness of the filter in improving the resolution of the measurement can be 
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Figure 7.5: Estimated measurement system impulse response. 
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Figure 7.6: Magnitude spectrum of the measured impulse response. 
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Figure 7.7: Phase spectrum of the measured impulse response. 
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Figure 7.8: Magnitude spectrum of the inverse filter. 
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clearly observed by comparing various signature components of the two figures. 

7.2 Ultrasonic Parameter Estimation 

Ultrasonic nondestructive evaluation of structural and material properties of a test 

specimen is a three step process (Figure 7.11). First, an appropriate acoustic signature of 

the test specimen is obtained. Second, various acoustic parameters like, velocity, 

attenuation, absorption and scattering are determined from the measured acoustic 

signature. Finally, the measured values of these acoustic parameters are related to the 

structural and material properties of the test specimen. 

This section first presents a brief theoretical treatment of various ultrasonic 

parameters, and then discusses the extraction of these parameters from the measured 

ultrasonic correlation signature using SSUE technique. 

7.2.1 Ultrasonic Velocitv Measurement 

Ultrasonic velocity measurements are widely used to determine the properties and 

states of materials. In the case of engineering solids, measurements of ultrasonic wave 

Acoustic 
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Acoustic 
Parameters 
Estimation 

Characterization 
of Test Object 
(Classification) 

Figure 7.11: Ultrasonic nondestructive evaluation conceptual model. 
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propagation velocities are routinely used to determine the elastic constants [79, 80]. 

Since the SSUE technique employs separate transmitting and receiving transducers, 

two different instrument configurations are possible for the measurement of correlation 

signature. Configuration-1 has the advantage that only one surface of the specimen is 

involved (Figure 7.12). However, it requires the second backwall reflection for velocity 

measurement, which, in case of attenuative material, might have very poor signal-to-noise 

ratio. Configuration-2 requires access to both the front and the back surface of the 

material (Figure 7.13), however, it performs velocity measurement from the through 

transmission signature component and the first reflection component and hence is superior 

in terms of accuracy of measurement. 

Three methods of measuring the ultrasonic velocity fix)m the correlation signamre 

are considered. These are, (a) echo-overlap method, (b) phase-slope method, and (c) 

crosscorrelation method. 
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Figure 7.12: Instrument-specimen configuration-1 for velocity measurement. 
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Figure 7.13: Instrument-specimen configuration-2 for velocity measurement. 

Echo-overlap Method: This is the simplest of the three methods discussed. It 

involves the windowing of first signal component, Rl, in the correlation signature (Figure 

7.14) and sliding it over the second signal component, R2, in order to get an optimum 

match of the peaks and the zero crossings (Figure 7.15). The amplitude of the two echos 

will of course be different due to the attenuation effect of ultrasound. Figure 7.15 shows 

the result of overlapping the echos Rl and R2. The echo-overlap method depends on 

having a pair of echos, Rl and R2, that exhibit similar waveforms with corresponding 

features. This method performs poorly when the effects of wave distortions due to noise, 

dispersion, and other factors that operate on successive echoes are present. Dealing with 

these distortion effects is facilitated by employing the phase-slope or cross-correlation 

method. 
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Figure 7.14: Correlation signature containing two successive signal components. 
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Figure 7.15: Echo overlap method of velocity/thickness measurement. 
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Phase-slope Method: With the phase-slope method, time ijetween echos is found 

by the use of phase spectra of echo waveforms. After the echos are digitized, a Fourier 

transform of each is obtained by a discrete FFT algorithm. The amplitude and continuous 

phase spectra for a pair of typical echoes are illustrated in Figures 7.16. 

After the Fourier transformation, both the amplitude and the phase spectra are used 

to define a central zone within the frequency domain. For example, this zone may consist 

of only a narrow range near the center frequency or a frequency range for which the 

amplitude exceeds some fraction of the peak value, and/or the zone may consist only of 

the frequency range for which the phase spectrum is linear. These restrictions eliminate 

the low and high frequency extremes where the signal-to-noise ratio is low. 
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Figure 7.16: Magnitude and phase spectra of two successive echos. 
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The phase spectra of the two echos can be approximated as linear functions of 

frequency and the slope of the line is used to determine the time delays T1 and T2. If 

Ml and M2 represent the slope of the phase spectra of echos R1 and R2 respectively, the 

corresponding time delays are given as, 

77=— , 72=— (7.4) 
2n 27C 

and the total time delay, T, is given by, 

T=W+CT2-T^) (7.5) 

Crosscorrelation Method: The digital cross-correlation method eliminates the need 

for somewhat arbitrary criteria (e.g., peak value and zone for phase slope) applied in the 

two previously described methods. Unlike the echo-overlap or phase-slope method, cross-

correlation does not require explicit criteria for accepting or rejecting specific features in 

echos affected by distortion or low signal-to-noise ratios. The cross-correlation function 

possesses a maximum in the lag domain (Fgiure 7.17). The displacement of this 
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Figure 7.17: Crosscorrelation of two echos. 
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maximum relative to the zero reference gives ±e time interval, C, which for ideal case 

should be equal to T2-T1, as measured by the digital overlap method. 

7.2.2 Ultrasonic Attenuation Measurement 

Another basic approach to material characterization involves the measurement of 

energy losses of ultrasonic waves as they interact with the material microstructure. There 

is a considerable literature based on ultrasonic studies of grain size via attenuation 

measurements [81, 82, 83, 84]. Strong correlations have been found among ultrasonic 

wave attenuation and material variations due to hardening, annealing, quenching and cold 

working. 

Given a plane wave of small amplitude, the energy intensity at a distance, x, from 

the source of ultrasound is given by, 

(7.6) 

The total attenuation coefficient, ot, combines the absorption coefficient, cx^, and the 

scattering coefficient, oCj. In general, attenuation coefficient is frequency dependent. 

a(/)=a,(^+aaC^ 

Attenuation measurements are generally most useful only when made over a wide range 

of frequencies because the frequency dependence of attenuation is closely tied to the 

material properties. 

Two methods of attenuation measurement are generally used. The first method 

assumes the attenuation coefficient, ot, to be constant over the frequency range of interest. 

It involves the measurement of multiple reflections from the two parallel surfaces of the 

test sample (Figure 7.18), and determining the envelope function. The envelope function 

provides the estimate of attenuation coefficient, a. In order to get more accurate estimate 

of the attenuation coefficient, ot, various corrections for the beam diffraction are carried 

out. The second method is used for broadband measurement of attenuation coefficient. 
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Figure 7.18: Attenuation coefficient measurement method-1. 

It measures the frequency dependent attenuation coefficient, . by evaluating the 

frequency spectrum of each reflection component. If R 1(f) represent the amplitude 

spectrum of the first reflection and R2(f) is the amplitude spectrum of second reflection, 

the attenuation coefficient, «(/)' is given by, 

a0=—— 

where x is the thickness of the test specimen. 

7.3 Signature Discrimiiiation Techniques 

In SSUE technique, the measured ultrasonic correlation signature represents the 

aggregate acoustic characteristics of the test material. Hence a change in any single 

acoustic parameter of the test material is reflected as some kind of a change in the 
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measured correlation signature (Figure 7.19). In most practical situations it is only one or 

a few out of all the parameters that are of interest. In order to detect a change in the 

acoustic parameter of interest from the measured ultrasonic correlation signature, some 

kind of discrimination technique is required. 

There are two kinds of factors that effect the ultrasonic correlation signature. The 

uncorrelated measurement system noise (acoustic, electronic, electromagnetic, etc.), and 

the acoustic parameters of the test object. Since, in addition to the deterministic 

parameters, there are various random factors affecting the correlation signature, statistical 

methods have to be applied for the signamre discrimination. In general, signature 

discrimination techniques can be divided into three classes, 

Class-I Controlled experiment 

Class-H Uncontrolled but modelable experiment 

Class-IH Uncontrollable and unmodelable experiment 
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Figure 7.19: Factors affecting the correlation signature in SSUE technique. 
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In a controlled experiment, except for the parameters of interest all the other 

deterministic parameters are held constant during the measurement process. Hence, only 

one deterministic variable is allowed to change the measured correlation signature. Of 

course all the random factors will still be there, but their statistics can either be modeled 

or measured, which make it possible to establish the effects of a single parameter of 

interest on the ultrasonic correlation signature. This class of signature discrimination does 

not rely on any kind of theoretical modeling of ultrasonic signal propagation and is, 

therefore, the simplest. However, it puts a lot of restrictions on the experimental setup 

and may not be practicable in many situations. 

The second class of signature discrimination techniques represents the experimental 

situations where it is not possible to control all the system parameters. However, their 

values can be independently measured and their effects can be compensated for on the 

correlation signature. As an example, it may not be possible to control the temperature 

during an experiment where the attenuation coefficient is the parameter of interest. But if 

the effect of temperature on the correlation signature is known a priori, the variation of 

temperature can be compensated. This signature discrimination approach relies heavily on 

the theoretical modeling of the effects of various deterministic factors on the measured 

signature. It can work well in moderately complicated experimental situations. 

The third class represents the most complex category of signature discrimination 

techniques. It deals with the experimental situations which are theoretically untractable 

and hence the theoretical modeling of various aspects of the experiment is very difficult. 

This class relies heavily on empirical correlation between the acoustic parameters and the 

correlation signature. 

7.3.1 Pattern Classification Approach for Si^ature Discrimination 

In certain NDE situations, the signature discrimination issue can be reduced down 

to a two class or a multi class pattern classification problem. For example, if the 

inspection requirement is to check the test specimen for the presence or absence of 
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internal flaw, then this is a two class identification problem with class-1 representing the 

presence of flaw and class-2 representing the absence of any flaw. A similar approach 

can be used for the characterization of multiple flaws, such that. 

Class-1 No flaw present 

Class-2 Flaw-1 present 

Class-3 Flaw-2 present 

Without having a theoretical knowledge of how the correlation signature is altered by the 

presence or absence of a certain type of flaw, a pattern classiflcation approach can be used 

to discriminate between the three classes of No Flaw, Flaw-1, and Flaw-2. 

A pattern classification algorithm typically involves three steps, (a) feature 

extraction, (b) feature selection (data reduction), and (c) pattem classification [85]. In 

the following, these three steps of the algorithm are developed for application to ultrasonic 

correlation signature. 

Feature Extraction: An ultrasonic correlation signature represents a data vector to 

be analyzed by the pattem classification algorithm. As a first step, different features 

needs to be extracted which eliminate the unnecessary data and are subsequently used for 

pattem classification. It was decided to analyze the data in frequency domain as it offers 

three important advantages, which are, 

(a) out of band noise can be eliminated 

(b) data reduction can be achieved without loosing information 

(c) phase error in the data can be accommodated 

Hence, the fast Fourier transform (hKl ) of the correlation signature is determined and the 

magnitude of N frequency bins corresponding to the passband spectrum are selected as the 

feature vector (Figure 7.20). 

Feature Selection (Data Reduction): A feature selection criteria is required to rank 

the feature elements according to their discrimination ability and to discard those elements 

that fall below certain threshold, thus reducing the feature vector length and the vector 
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Figure 7.20: FFT magnitude of correlation signature representing the feature vector. 

space spanned by it. To do that a set of training data is acquired that is grouped as class 

I, class 2 and class 3. Assuming that there are twenty feature vectors in each class, 

making a total of sixty. A mean feature vector, in„, and a standard deviation vector, 5„, 

for each class is determined, where n = I, 2, 3 corresponding to the three classes. The 

mean vector represents the location of a particular class in an N-dimensional vector space, 

while the standard deviation vector represents the spread of the class in the vector space. 

In order to rank each element of the feature vector for its discrimination ability, two 

quantitative measures are defined. 

Intra class spread (sj: This is the average of the ith elements of standard deviation 

vectors of the three classes. 
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(7.9) 

Inter class distance (dj): This is the average difference between the ith element of mean 

vectors of the three classes. 

The ratio of inter class distance to intra class spread (Figure 7.21), called (s/d^) ratio, for 

each feature element serves as the criteria for ordering the feature elements. Based on an 

empirically determined threshold, the top M feature elements are selected and the other 

discarded. 

Pattern Classification: With the reduced M-dimensional feature space, the next 

step is to select a classification criteria and to determine the decision boundaries (Figure 

7.22). Mean feature vectors of each of three clzisses determine the location of each class 

in the M-dimensional space. A cost function was introduced for decision between flaw 

and no flaw cases based on the acceptable ratio of "probability of misdetection" to the 

"probability of false alarm". Since the misclassification between flaw-1 and flaw-2 is 

(7.10) 

m. 

Figure 7.21: Graphical representation of feature selection criteria. 



www.manaraa.com

173 

deosoD 
boundary 

No 
Raw 

Haw-2 

Haw-1 

dedsiaa 
boundary 

Figure 7.22: Graphical representation of pattern classification algorithm. 

considered of equal significance, the decision surface between those two classes is an 

orthogonal hyperplane bisecting the line joining the vectors m, and ni2 (Figure 7.22). 

With this the vector space is now divided into three regions representing each class. Any 

unknown data vector is classified by mapping it onto this M-dimensional vector space 

according to the above algorithm and identifying the region to which it belongs. 

7.4 Envelope of Ultxasonic Coiielation Signature 

In SSUE technique, the measured ultrasonic correlation signature, <|)^(T) , 

represents an estimate of the composite system impulse response function, h(x). »-e.. 

is a bandlimited signal having a center frequency, , and bandwidth, B. In many 

(7.11) 
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practical NDE applications such as, flaw detection and transit time measurement, it is 

desirable to translate the ultrasonic correlation signature to baseband level. This implies 

finding a baseband equivalent of <|)^(t) . or in other words finding an envelope function of 

. The ultrasonic correlation signature, 4)^(t) . can be written as, 

<|)^(t) =A(t)COS((i)oT) -B(T)sm((i)o'c) (7.12) 

and has a broadband frequency spectrum. A typical ratio of bandwidth, B, to the center 

frequency, fo , is around two. Hence, the narrowband signal assumption, can 

not be applied. This implies that a simple envelope detection of <j)^(T) can not be 

performed to find its baseband equivalent. The concept of signal preenvelope or analytic 

signal is therefore applied [61] for this purpose. 

In general, the analytic signal or the preenvelope of a real signal, , is the 

complex-valued function defined as. 

The real part of the analytic signal is, of course, the real signal, f^), itself, while the 

complex part is the Hilbert transform of the real signal, represented as, y^(f). The 

envelope of is the absolute value of its preenvelope f^{f). given as. 

Since, by definition, the imaginary part of the analytic signal is the Halbert transform of 

its real part, the sunmmiation of frequency spectrum of and results into the 

cancellation of their imaginary components, while the real part of the spectrum adds up to 

give twice the magnitude, while the imaginary components cancel each other. 

The demonstration of the computation of correlation signature envelope is made in 

Figures 7.23 through 7.26. 
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Figure 7.23: Representative correlation signature component 
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Figure 7.24: Magnitude spectrum of correlation signature. 
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Figure 7.25: Spectrum of the corresponding signal preenvelope. 
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Figure 7.26: Envelope of the correlation signature component. 



www.manaraa.com

177 

Hence, the following procedure is adopted for the calculation of the envelope of 

ultrasonic correlation signature: 

(a) compute the Fourier spectrum (FFT) of ultrasonic correlation signature, 

(b) set ±e imaginary part of the computed spectrum to zero, 

(c) compute the inverse Fourier transform (IFFT) of the resultant, 

(d) take the absolute value of IFFT which is the desired envelope function. 
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CHAPTER 8 APPLICATIONS OF SSUE 

This chapter investigates the application of SSUE technique to various practical 

NDE problems. It describes a number of different experiments that were conducted in the 

laboratory environment utilizing the lab-grade prototype instrument. Various signal 

processing tools discussed in Chapter 7 were applied to the experimental data. 

8.1 Flaw Detection in Attenuative Materials 

Flaw detection is perhaps the oldest and the most straight forward application of 

ultrasonic NDE. It presumes that the acoustic signal propagation characteristics of the test 

material are known. In particular, the mode of propagation of ultrasonic waves and their 

velocity has to be known. Most flaw detection measurements are performed by 

employing the longitudinal mode of wave propagation. For the detection of smaller flaws 

in attenuative materials, high SNR systems are desirable. SSUE technique, by virtue of its 

inherent noise suppression characteristics is ideally suited for such cases. 

R • 1.1 Experimentation 

The effectiveness of SSUE technique for flaw detection in attenuative materials is 

demonstrated through the following experiment. The test sample consists of a block of 

plastic (Perspex) material with two smooth parallel surfaces. A small flaw was simulated 

by drilling a flat bottom hole of .05 inch diameter and .06 inch depth (Figure 8.1). The 

transducers were coupled to the parallel surface opposite to flaw and positioned next to 

each other. This is a typical setup of pulse-echo ultrasonic technique. First, the ultrasonic 

signature through the standard pulse-echo system was measured and is shown in Figure 
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8.2. Next, the ultrasonic signature through the SSUE technique was determined and is 

shown in Figure 8.3. Both the systems used a transducer pair with 5 MHz center 

frequency and a bandwidth of about 10 MHz. It is obvious that the pulse-echo system 

could not detect the flaw signal due to poor signal-to-noise ratio, while in case of SSUE 

measurement, the flaw signal stands out well above the noise floor. 

8.1.2 Flaw Characterization 

Modem ultrasonic NDE, in addition to flaw detection, also attempts to characterize 

the nature of flaw. This is partly because the ultrasonic techniques have developed to a 

level where reliable flaw characterization have become possible, and partly because of the 

economic reasons of exploiting full potentials of the component's useability. This 

approach to life prediction of a fatigued component is sometimes referred as a "damage 

tolerance" approach and is based on fracture mechanics methodology. With this approach, 

instead of assuming that all flawed components must be taken out of service, the severity 

of flaw is assessed and a more rational determination of the remaining life of the 

component is made. 

transmit receive 
transducer transducer 

flat bottom 
hole 

Figure 8.1: Test setup for flaw detection. 
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Figure 8.3: Ultrasonic signature measured through the SSUE system. 
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Various researchers addressed the flaw characterization problem [86, 87, 88]. In 

most cases, the frequency domain approach was followed. It was verified that various 

classes of flaws reflect a specific pattern in the magnitude spectrum of the flaw signature. 

A successful flaw characterization approach requires, as a prerequisite, a very accurate 

flaw signature. For this, SSUE technique can be applied with considerable success. 

Although the flaw characterization issue has not been addressed in the current work, there 

is no doubt that SSUE, owing to its better signature estimation feature, is capable of 

producing improved results in the characterization of various types of flaws. 

8.2 Velocity and Thickness Measurement 

The most frequent application of ultrasonics to material property measurement 

involves the study of elastic constants and related strength properties of test material. 

According to the physical acoustics theory, the elastic behavior of solids can be 

determined by the measurement of ultrasonic velocity. Measurement of longitudinal and 

transverse velocities give the longitudinal and shear moduli, respectively, such that, 

L=pv^2 (8.1) 

S=pv/ (8.2) 

where p represents the density of the material. 

Hence a relatively small change in the ultrasonic velocity can indicate a significant 

variation of material strength related characteristics. This reflects the significance of 

making very precise and accurate velocity measurements. The use of SSUE technique for 

velocity measurements has a three-fold advantage. First, the measured signature has a 

better SNR, second, it has a higher resolution, and lastly, it can permit the use of multiple 

echos in order to minimize the measurement error. 



www.manaraa.com

8.2.1 Experimentation 

182 

The ultrasonic correlation signature was measured and the first and second 

backwall reflection components were separated. They are shown in Figure 8.4. It can be 

seen that the echo overlap method (section 7.2.1) of velocity measurement will not work 

here because the zero crossings of the two echos do not properly match. Hence, the other 

two methods, which are, phase-slope method and the crosscorrelation method, were used 

to measure the ultrasound velocity. For the phase-slope method, the two echo components 

were gated as. 

Hence the sample delay between the two gated echos, represented by W is 400. The 

continuous phase spectra of the two echos was calculated and is shown in Figure 8.5. 

The phase spectra were approximated as straight lines and the slope calculated as. 

Ml =540 rad/hertz, M2=770 rad/hertz 

Hence, in reference to the development of section 7.2.1, the transit time delay between the 
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Figure 8.4: Windowed ultrasonic correlation signature. 
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Figure 8.5: Phase spectra of echo-1 and echo-2. 

two echos came out as, 

r=fF+(Af2-Afi)/2ic =400+36.6 samples (8-3) 

The crosscorrelation method involves calculating the autocorrelation of the 

correlation signature. This is shown in Figure 8.6, along wi± the envelope function 

calculated as per the procedure of section 7.4. The time delay between the first and the 

second peak of the envelope function gives the transit time delay of the two echos which 

was measured as 437 samples. This result was in very close agreement with the result 

from the phase slope method. 

8.2.2 Thickness Measurement 

Conceptually, thickness measurement is the reciprocal of velocity measurement. 

When the velocity of ultrasound in the test material is known, a priori, its thickness can 
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Figure 8.6: Autcx:orrelation of the ultrasonic correlation signature. 

be found by the transit time measurements. However, thickness measurement has a lot of 

practical significance in real-life ultrasonic NDE applications. In many situations, only 

one surface of the test material is accessible and it is required to measure its thickness 

using some ultrasonic NDE technique. One common situation is the measurement of 

corrosion in a metallic pipeline. Another situation is the measurement of concrete wall 

thickness. Thus the SSUE technique can be applied for improved thickness measurement 

in a variety of situations. 

8.3 Attenuation Measurement 

Ultrasonic attenuation measurement involves the measurement of multiple 

reflections from the two parallel surfaces of the test specimen. When the test material 

exhibits highly attenuative characteristics, the measurement of multiple signal reflections 

with sufficiently high SNR, using conventional pulsed ultrasonic systems becomes 
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increasingly difficult. Usually, coherent averaging of multiple measurements is done to 

get a good quality signal for attenuation measurement. SSUE technique can be used for 

the attenuation measurement as it can provide a good quality acoustic signature of the test 

specimen thus eliminating the need of coherent averaging. 

The frequency dependent ultrasonic attenuation measurement of a test sample using 

the SSUE technique was performed. The transmitting and the receiving transducer were 

placed in a through transmission mode (Figure 8.7). The signal processing method 

explained under section 7.2.2 was used for these measurements. 

transmit 
transducer 

receive 
transducer 

Figure 8.7: Through transmission test setup for attenuation measurement. 

The ultrasonic correlation signature is shown in Figure 8.8. Various multiple 

reflection components can be seen in this figure. The magnitude frequency spectra of the 

first three reflection components were calculated and are shown in Figure 8.9. Finally, the 

plot of ultrasonic attenuation versus frequency is shown in Figure 8.10. 
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Figure 8.8: Measured ultrasonic correlation signature. 
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Figure 8.9: Frequency spectra of multiple reflections. 
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Figure 8.10: Plot of measured attenuation coefficient. 

8.4 Global Integrity Assessment of Complex Objects 

Global integrity assessment implies the evaluation of integrated effect of 

distributed damage or property variation within a test specimen. In certain NDE 

applications, either due to the complex geometry of the test object or the complex nature 

of the material of the object, it is not possible to identify each isolated critical 

imperfection. Consequendy, the NDE of such objects involve the integrated condition 

assessment. One practical situation for which the application of SSUE technique is under 

consideration is the integrity monitoring of security containers carrying nuclear warheads. 

In this application, it is critical that very low amplitude ultrasonic signals be employed 

and the technique be very sensitive to monitor all kinds of changes. Incidently, SSUE 

bears both of these features. 

A similar application is the integrity monitoring of pressurized gas cylinders. It 

was told that the pressurized gas cylinders, during their service life develop small internal 
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cracks, which propagate and enlarge and, if not detected before a critical limit, can result 

into a catastrophic explosion. An experiment for the global integrity assessment of these 

pressurized gas cylinders was carried out and is discussed as follows. 

8.4.1 Aluminum Gas Cylinder Experiment 

A laboratory experiment was designed to study the sensitivity of SSUE technique 

in the detection of small notch-like simulated flaws at various regions on the surface of 

cylinder. The schematic drawing of the cylinder and the position of ultrasonic transducers 

is shown in Figure 8.11. Various positions for the transmitting and the receiving 

transducers were tried in an attempt to find the optimum insonification of the entire 

volume of the cylinder. Finally, the arrangement indicated in the figure was chosen, as it 

indicates nearly uniform insonification of most of the cylinder volume. 

The transducers used for this experiment were of 1 MHz center frequency and 

therefore the carrier frequency of 1.0 MHz with a chipping rate of 0.5 MHz was used for 

transmit signal generation. The excitation waveform was based on a 12 th order maximal-

length sequence. The digitizer was clocked at 40 samples per chip. Flaws were simulated 

A B C 
Neck/Shoulder Barrel Region Base Region 

Region 

Gas Cylinder 
Rx TK J 

Figure 8.11: Schematic drawing of aluminum cylinder experiment. 
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at three different regions of the cylinder that were considered critical. The simulated 

flaws were introduced into the cylinder using a Dremel tool to cut crack-like notches into 

the neck, barrel and base regions (Figure 8.11). In each region, the flaw size was 

progressively increased from the smallest to the maximum size. A total of 10 data 

records were recorded corresponding to each flaw. The data records were grouped into 

classes where each class represents one physical "state" of the cylinder. The signature 

discrimination technique discussed in section 7.3 was applied to determine the sensitivity 

Table 8.1: Approximate dimensions of different simulated flaws. 

Data Set Class Flaw Type Dimensions (LxDxW) 

Class-1 Baseline for shoulder 

Class-2 Flaw-1 at shoulder 1.5 mm X 5.0 mm x 2.0 mm 

Class-3 Flaw-2 at shoulder 1.5 nmi X 7.5 mm x 2.0 mm 

Class-4 Flaw-3 at shoulder 1.5 mm X 10 mm x 2.0 mm 

Class-5 Baseline for barrel region 

Class-6 Flaw-1 at barrel region 1.5 mm X 5.0 mm x 2.0 mm 

Class-7 Flaw-2 at barrel region 1.5 mm X 7.5 mm x 2.0 mm 

Class-8 Flaw-3 at barrel region 1.5 mm X 10 mm x 2.0 mm 

Class-9 Baseline for base region 

Class-10 Raw-1 at base region 1.5 nmi X 5.0 nmi x 2.0 mm 

Class-11 Flaw-2 at base region 1.5 mm X 7.5 mm x 2.0 mm 

Class-12 Flaw-3 at base region 1.5 mm X 10 mm x 2.0 mm 
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of the SSUE technique to the simulated flaws at various regions of the cylinder. 

The flaw classiflcation results are tabulated in Table 8.2. These results indicate 

that the SSUE correlation signature is sensitive to acoustic changes in all the three critical 

regions of the cylinder. Also, each incremental flaw was well-discriminated form one 

another. 

Table 8.2: Classification statistics of different simulated flaws. 

Data Set Class 

Class # 

ij Class Type 

Intra-

set 

spread 

Inter-class 

distance 

Dij 

Class-I 1,1 Baseline for shoulder 2.66 0 

Class-2 1,2 Flaw-1 at shoulder 1.33 176 

Class-3 2,3 Flaw-2 at shoulder 1.49 172 

Class-4 3,4 Flaw-3 at shoulder 4.89 247 

Class-5 5,5 Baseline for barrel region 12.95 0 

Class-6 5,6 FIaw-1 at barrel region 7.66 114 

Class-7 6,7 naw-2 at barrel region 6.50 104 

Class-8 7,8 Flaw-3 at barrel region 5.53 79 

Class-9 8,8 Baseline for base region 6.94 0 

Class-10 8,9 Flaw-1 at base region 5.44 121 

Class-11 9,10 Flaw-2 at base region 5.68 70 

Class-12 10,11 Flaw-3 at base region 7.14 89 
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Various seismic methods are utilized for geophysical exploration in order to 

determine the nature and configuration of rock layers deep in the earth. The traditional 

method is to generate an acoustic pulse of high intensity through a dynamite and to record 

the reflections of the incident pulse from various layers of earth, through what is callcd a 

gcophone. A relatively new technique is called VIBROSEIS. Vibroseis is at present the 

dominant method of exploring oil on land (Figure 8.12). This method is based on the 

principle of chirp radar. As discussed earlier under section 2.6.2, a chirp waveform 

results into correlation sidelobes and even though various techniques exist for the 

reduction of correlation sidelobes, these can not be completely eliminated and thus restrict 

the dynamic range of the measurement. 

SSUE technique appears to be ideally suited for upgrading the Vibroseis technique 

of geophysical exploration. In fact, the same equipment with very little modification in 

transmitter electronics can be used to implement the SSUE technique. As long as the 

frequency spectrum of the SSUE waveform matches the frequency spectrum of the chirp 

signal applied in Vibroseis, there is no change required in the vibrator mechanism (Figure 

Figure 8.12: Representative Vibroseis system mounted on a truck. 
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8.13). The only change required is in the waveform generation process and the 

correlation processing at the receiver, which in present days is almost invariably done in 

digital domain. 

Cylinder 

Piston 

Reaction 
mass 

Figure 8.13: Typical vibrator schematic of Vibroseis system. 



www.manaraa.com

193 

CHAPTER 9 SUMMARY AND DISCUSSION 

This chapter summarizes the research work presented in this dissertation and 

discusses the strengths and limitations of SSUE technique. Various future application 

areas of SSUE technique are highlighted, and finally, different possible directions for the 

future research on the advancement of SSUE technique are presented. 

9.1 Summaiy of Research 

A new approach to ultrasonic NDE called spread-spectrum ultrasonic evaluation 

(SSUE) was investigated. It regards the ultrasonic nondestructive evaluation of a test 

sample as an acoustic impulse response estimation and characterization problem. This 

problem has been compared with the analogous problems of radio-detection-and-ranging 

from communications field and the seismic exploration problem of geophysics. Out of the 

various options for impulse response estimation, the continuous pseudorandom signal 

correlation method has been shown to be optimum for peak power limited systems such as 

the ultrasonic NDE systems. The problem of self-noise associated with the pseudorandom 

correlation systems and its effect on the system performance are investigated, followed by 

the development of various optimum and sub-optimum approaches to self-noise 

elimination. 

After verifying the theoretical results through computer simulations, a lab-grade 

optimized SSUE instmment was developed and analyzed. The application of SSUE 

technique to various practical NDE situations like, flaw detection, velocity/thickness 

measurements, attenuation measurement, global integrity assessment, etc., was investigated 

through various laboratory experiments. It is concluded that the SSUE technique holds 

great promise for all ultrasonic NDE applications where high signal attenuation results 
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into the signal-to-noise ratios beyond workable liniits. 

9.2 Evolution of SSUE Technique 

The SSUE technique is based upon the concept of pseudorandom signal 

correlation. If we view the development of SSUE technique, keeping in perspective the 

development of various other ultrasonic NDE techniques, we see that the SSUE system 

can be considered as an advancement of the earlier ultrasonic correlation systems. The 

evolution of an optimized SSUE system, as described in this dissertation, can be 

sunmiarized through the following four developmental stages. 

(a) Conventional Pulsed Systems 

(b) Pulse-Compression Systems 

(c) Pseudorandom Correlation System 

(d) Optimized SSUE System 

A common endeavor through this developmental process was to increase the 

detectability limit of the ultrasonic NDE system by accomplishing better signal-to-noise 

ratio and improved dynamic range. The conventional pulsed systems had a limitation of 

peak signal power which led to the application of larger time-bandwidth pulses in pulse-

compression systems, the concept borrowed from the radio navigation and ranging 

systems. The pulse-compression systems solved the peak-power limitation but the system 

performance is now limited by the system's self-noise. The pseudorandom correlation 

system was based on the ideas adopted from the spread-spectrum techniques of radio 

conmiunication. Here, by employing the periodic autocorrelation properties of the 

continuous excitation waveform, a considerable reduction in the system's self-noise level 

was achieved. Finally, through what is termed as an optimized SSUE system, the self-

noise problem is completely eliminated. The sensitivity of the new system is purely 

dependent on the signal-to-random-noise ratio, which can be improved to any desired level 

by employing longer sequences, of course, at the cost of greater system complexity and 

signal processing. 
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9.3 Limitations of SSUE System 

Like any practical system, SSUE also has a few limitations of its own. In the 

following, these are categorized as the fundamental limitations and the technological 

limitations. 

9.3.1 Fundamental Limitations 

(a) Perfect self-noise suppression is possible only under the continuous or pseudo-

continuous transmission of the pseudorandom excitation waveform. 

(b) The SSUE technique requires separate transmit and receive transducers. 

(c) The measured acoustic impulse response, h(t), will be bandlimited to the 

transducers' passband. 

(d) The period of pseudorandom excitation waveform, T, should be larger than the 

time span of the system impulse response, h(t). 

(e) It is only the uncoirelated noise that is suppressed by the SSUE technique, and the 

level of suppression is determined by the SNR gain factor. 

9.3.2 Technological Limitation 

(a) The peak transmit power is limited by the maximum average power handling 

capacity of the transducers. 

(b) The quantization noise level in the received signal is the limiting factor in 

achieving a large dynamic range. 

(c) The maximum useable sequence length is a function of correlation processing 

speed of the signal processor. 

(d) Maximum useable sequence length is limited by the data handling capacities of 

various system components like the function generator and the digitizer. 
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9.4 Further Research Areas for SSUE Technique 

In order to utilize the fiill potentials of SSUE technique and to establish its 

effectiveness in a variety of ultrasonic NDE applications, there are quite a few areas of 

further research and development. It is likely to take a number of years of dedicated 

research before SSUE can be accepted as a powerful tool by the NDE community. Here, 

some of the important areas of further research and development are highlighted. 

9.4.1 Customized Transducer Development 

The transducers currently available in the market are designed for applications 

involving pulsed mode operation. Thus their design is optimized to provide maximum 

peak power capabilities and the average power handling capacity of a transducer has not 

been the primary design consideration. As a result of this the operating average power 

levels in SSUE system were limited by the heat dissipation capacity of the existing 

transducers. This setback to the operation of SSUE system can be avoided if customized 

transducers can be designed considering the continuous mode of operation. Also, in order 

to facilitate the pulse-echo equivalence of SSUE technique, for applications like flaw 

detection, a pair of concentric transducers enclosed in a single casing needs to be 

developed. Finally the performance of SSUE technique in the estimation of true impulse 

response of a test specimen is limited by the bandlimited transducer characteristics. 

Further research into the development of broader operating bandwidth transducers can 

improve the performance of SSUE technique. 

9.4.2 Multiple Transducer Svstem 

The linear time-invariant, single-input single-output model of ultrasonic NDE 

system can be conveniently extended to acconunodate multiple-inputs and multiple 

outputs. In this case the system impulse response is represented by a correlation signature 
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matrix with each element of the matrix representing a unique input output relationship of 

the test specimen. This model can be used to develop a multiple input/output SSUE 

system (Figure 9.1). In case of the NDE of large stmctures and objects, the single pair 

transducer SSUE system can prove inadequate in achieving the desired sensitivity of the 

measured correlation signature. For such applications, a multiple input/output system has 

to be developed. 

Host Computer 

multi-channcI 
correlation 

receiver 

multi-channel 
spread-spectnun 

transmitter 

Figure 9.1: Multiple input/output SSUE system. 

9.4.3 Expert Svstem Development 

In many NDE applications, either due to the complex shape of the test object or 

the dispersive/anisotropic acoustic properties of the test material, it is very difficult to 

accurately model the propagation and reception of ultrasonic signal. The measured 

correlation signature for such cases will consist of multiple overlapping echos. The 
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development of an expert system that can separate out various components of the 

measured ultrasonic correlation signature is a research area that has not yet been 

sufficiently explored. The signature discrimination technique developed as a part of the 

present research has a very limited scope of application in a real situation. There is a 

need to develop more robust and powerful techniques that can separate various interacting 

signature components. 

9.5 Future Applications of SSUE 

Spread-spectrum ultrasonic evaluation technique opens a new range of possibilities 

in the effective inspection and characterization of engineering materials. The present 

results suggest that this technique has potential applications in a wide range of ultrasonic 

NDE area. Some of the most promising application areas are discussed below. 

9.5.1 Testing of Concrete Structures 

Concrete is a multiphase composite material consisting primarily of aggregate 

particles held together by a binding matrix. The binding matrix is a brittle hardened 

cement paste that demonstrates a viscoelastic nature. Steel reinforced concrete is one of 

the most widely used building materials in the world. It may be found in the highways, 

bridges, foundations, and structural members, to name just a few applications. The 

significance of effective nondestructive evaluation of concrete structures can not be 

overemphasized. The deteriorating infrastructure of the United States signals the 

importance of techniques that may quickly and practically assess the condition of large 

and often complicated structures. The determination of bulk material properties, such as 

compressive strength, across a large material volume remains a necessary job in the 

concrete evaluation industry. 

Various existing methods for the NDE of concrete are, pulse velocity method, 

impact echo method, and spectral analysis method. SSUE technique can be used for the 
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measurement of signal velocity and frequency dependent attenuation in concrete structures. 

It can also be used for the measurement of acoustic signature variations of a complex 

structure. By employing an expert system to separate the normal cyclic variations in the 

correlation signature, it is possible to assess the integrity of the structure. 

9.5.2 Grain Size Estimation 

The importance of grain size measurement as a means of determining the structural 

and mechanical properties of materials has long been recognized by the industry. For the 

same reason significant research has been directed towards the grain size measurement by 

the NDE community. The literature survey indicates that the ultrasonic evaluation of 

grain size is the most practical and widely used method. Two major approaches exist for 

the grain size measurement which are, (a) attenuation measurement, and (b) scattering 

measurement. Current techniques can only be applied to materials which result in grain 

boundary echoes that are visible above the received noise level, which implies, (a) large 

grained samples, and (b) high SNR systems. 

Since the SSUE technique is capable of providing very high SNR, it can perform 

more accurate grain size estimation of typical samples. Also, it can be applied for the 

grain size estimation of smaller grained materials. A statistical model for the power 

spectrum of backscattered echos from random grains can be developed and various model 

parameters can be estimated from the ultrasonic correlation signature measured through 

the SSUE technique. The estimated parameters provide the grain size information. 

9.5.3 Integrity Testing of Composite Materials 

Composite materials pose two kinds of challenges to conventional ultrasonic NDE 

methods. First, they exhibit highly attenuative and anisotropic signal propagation 

characteristics, and second, they fail in a manner totally different than the common 

homogeneous engineering materials. Whereas many traditional engineering materials fail 
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due to the initiation and propagation of a crack, reinforced composite materials degrade 

and fail in a manner more analogous to the collapse of a structure. Consequently the 

NDE of such materials involves assessing the combined effect of the material's damaged 

condition rather than identifying and sizing single critical imperfection. Since the SSUE 

technique measures the acoustic-impulse-response that represents the aggregate 

characteristics of the test material, it is possible to get a more accurate assessment of the 

combined state of a composite material. 

9.5.4 NDE of Adhesivelv Bonded Joints 

The application of adhesively bonded joints in structural components made of fiber 

composites, as replacement for mechanically fastened joints, has increased significantly 

over the recent years. Bonded joints have the advantages of strength-to-weight ratio, 

design flexibility, and ease of fabrication. On the other hand, physical discontinuity such 

as voids and disbonds can easily occur in the bonded joints during the manufacturing 

process. One of the major limitations on the use of adhesives in structural applications is 

associated with the difficulty encountered in making an accurate determination of bond 

quality or its potential performance after the joint has been assembled. In addition, the 

response behavior of a bonded joint during service could be affected by the environmental 

conditions. Thus, effective NDE methods for ensuring the quality of bonded joint is a 

topic of current research. The conventional NDE methods do not prove successful due to 

the highly attenuative and anisotropic characteristics of the material. A new class of 

ultrasonic NDE technique called Acousto-Ultrasonic has shown some success. Since 

acousto-ultrasonic technique has a lot of similarities with the SSUE technique in terms of 

signature analysis and interpretation, SSUE holds strong potential for future application in 

this area. 
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APPENDIX A CORRELATION AND CONVOLUTION 

Correlation and convolution functions are encountered in many scientific and 

engineering disciplines. These functions take different forms and carry different 

interpretation under different conditions. The concepts of correlation and convolution are 

pivotal to the development of the SSUE technique. It is, therefore, important to clearly 

define these concepts in the framework of present work and develop necessary relations 

and mathematical notations describing them. 

.4.1 Coirelation of Random and Detenninistic Wavefoims 

One form of correlation function commonly used by statisticians is associated with 

random processes and waveforms. The correlation function is meant to describe certain 

characteristics of the waveform generated by a random processe. In particular, the power 

spectral density and cross-spectral density of a random process are described through their 

correlation functions. A correlation function is, in general, defined for two random 

waveforms and it is identified as a crosscorrelation function. In a specific case, when the 

two random waveforms happen to be the same, it is called the autocorrelation function. 

Although correlation functions can be defined for non-stationary and non-ergodic 

processes, our following definitions of correlation functions is restricted to ergodic 

processes only. 

Let x(t) and y(t) be two random waveforms representing independent and jointly 

ergodic processes. Their crosscorrelation function is defined as. 
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T 

0 

and the autocorrelation function of the waveform, x(t), is defined as. 

(A-2)  

As seen by the defining equations of the auto- and crosscorrelation functions, it is not 

possible to exactly measure these functions as this involves integration over infinite time 

interval. An estimate of these functions, however, is found by taking T to be finite but 

sufficiendy large. 

The definition of correlation functions can be extended to characterize pseudo

random waveforms and processes and eventually to characterize all kinds of deterministic 

waveforms. To do that, the earlier definitions must be modified to acconmiodate a variety 

of situations. A deterministic waveform can either be time-limited or periodic. For time-

limited waveforms the correlation function is called linear correlation. Hence the linear 

autocorrelat ion function (LACF) of  a  waveform, x(t) ,  t imelimited to  (  0  < t  <  T^) is  

defined as. 

"U 

and the linear crosscorrelation function (LCCF) is defined as, 

To 

=-^ fx(t)y '(t-T)dt ( 
- 'ot  

For periodic waveforms, the correlation function is called periodic or circular 

correlation. If the two waveforms x(t) and y(t) both have a period Tp, their periodic 
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correlation functions (PACF & PCCF) are defined as. 

Tp 

^Jx) =-^ fx(t}x(t-c)dt 
T po 

PO 

Correlation function can also be defined for mathematical sequences of numbers 

and it can also be either a linear correlation corresponding to the non-repetitive sequences 

or a periodic correlation corresponding to the repetitive sequences. For two complex 

sequences {} and {} each of length L, their linear correlation functions are defined 

as. 

11=1 

fl«l 

where k = 0, 1, 2, . . . , (L-1). 

The periodic correlation functions of complex sequences {Xn} and {y„}, each of 

period L, are defined as. 

il»l 

where k = 0, 1,2,..., (L-1), and the sequence is assumed to be periodic with period L. 
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A.2 Power-Spectral Density and Cross-Spectral Density 

The power-spectrum of a random process gives the quantitative description of its 

frequency components. It is defined in terms of the autocorrelation function of the 

process as, 

OD 

—oo 

Similarly the cross-spectrum of two random processes gives the quantitative description of 

the frequency components shared by them. It is defined in terms of their crosscorrelation 

function as, 

m 

(A.I2) 

A.3 Convolution of Time-limited and Periodic Functions 

The convolution of two time functions x(t) and y(t) is another function given by, 

00 

z(f)=Jx(y)y(t-v)dv (A. 13) 

and represented by the convolution notation as, 

Z(r)=x(r)*y(r) (A.I4) 

Another case of interest is when one function, x(t), is time limited to T^ and the 

other function, y(t), is periodic with period Tp. The convolution function in such a case 

will again be periodic with period Tp, and given by. 
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p 
z(t) = J"x(v)y(t-v)dv ^ 

0 

This result is the comer stone of the pseudorandom signal correlation method of impulse 

response estimation discussed in section 3.2. 

A.4 Relation between Periodic Convolution and Periodic Cotrelation 

Comparison of the expressions of periodic crosscorrelation and periodic 

convolution reveal that the two can be related by, 

<|)j^(t)=x(t)*3'(-t) (A. 16) 

There is a scaling factor of Tp missing in the above equation, but that being a constant is 

inconsequential for our work and is, therefore, ignored. 
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APPENDIX B CONCEPT OF SYSTEM IMPULSE RESPONSE 

Impulse response of a system is, by definition, the response of the system when an 

impulse function is applied to its input. Although, the true impulse response of the 

system is a non-realizable concept, much like the impulse function (delta function) itself, 

yet it is a very powerful idea to describe the characteristics of any given system. The 

concept of system impulse response serves as the basis for developing a mathematical 

model  of  a  system and analyzing i ts  response to  al l  kinds of  inputs  (Figure B. l ) .  It  

provides a common platform to compare various types of physical systems like a 

mechanical system, an electrical system, and an optical system. 

If a system is linear and time-invariant (LTI), its impulse response completely 

describes the system characteristics. Not only does this means that, given an arbitrary 

input, the corresponding output can be determined, but a wealth of information regarding 

the physical nature of the system is also contained in the impulse response. As the input 

signal (delta function) contains all the frequency components, it excites all the resonance 

modes of the system and the impulse response acts as the signature function. 

input LTI system output 

Figure B.l: Impulse response model of an LTI system. 
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The impulse response of a system is the time-domain equivalent of the transfer function or 

the frequency response concept in the frequency-domain. The two descriptions of the 

system response are equivalent and are linked by the relations. 

m 

h(t)=-^f (B -1)  

(B-2) 
—OS 

where h(t) is the impulse response and H(f) is the frequency response. The responses h(t) 

and H(f) form a Fourier transform pair. 

In an LTI system, the input and the output are related through the well known 

convolution integral. 

y(t)=x(t)*h(t) (B.3) 

y(t)=J h(y)x(t-v)dv (B.4) 
—oo 

B.l Impulse Response of a Physically Realizable System 

Conceptually, the impulse response can be defined for a non-realizable system and 

it is a useful tool or concept for certain analysis situations. However, when we restrict 

our discussion to a physically realizable system, the associated impulse response bears 

certain unique properties. These are, 

(a) h(t) is a real function 

(b) h(t) is causal 

(c) h(t) is of Hnite duration 

(d) h(t) has finite energy 
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When h(t) is a real function of time, the output of the system, y(t), will be real, 

and hence measurable, for all real inputs, x(t). Causal h(t) implies that the impulse 

response is zero for t < 0. As a result of this property, the convolution integral in 

equation (3.21) reduces to a one-sided integral, i.e.. 

y(t) = Jh(y)x(t-v)dv 

Also, since h(t) is of finite duration, T^, the convolution integral now reduces to a finite 

integral, given by. 

y(t) = fhiM)x(t-v)dv -6) 
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APPENDIX C IMPULSE RESPONSE ESTIMATION METHODS 

The impulse response of a linear-time-invariant system is physically non-realizable, 

which means that we cannot measure the true impulse response of a given physical 

system. However, it is possible to make a reasonable estimate of the true impulse 

response, and there exists more than one method of doing so, each with its own merits 

and demerits. These methods are, 

(a) applying an impulsive signal as the input, 

(b) applying a single frequency tone and sweeping the frequency, 

(c) applying an expanded-pulse and performing pulse compression, 

(d) applying a purely random signal and performing crosscorrelation, 

(e) applying a pseudo-random signal and performing crosscorrelation, 

(f) applying a pseudo-continuous pseudo-random signal and doing 

crosscorrelation. 

C.l Impulsive Excitation Method 

In measuring the impulse response of an LTI system, the most direct approach is 

to apply an impulsive excitation to the system and observe the response. Owing to the 

simplicity of the approach and the instmmentation involved, this method finds its 

application in many areas like radars, pulse-echo ultrasonics, seismic analysis. There are 

two basic difficulties with this approach. The first is generating the impulsive excitation, 

and the second is obtaining adequate dynamic range. Because the duration of the impulse 

is, by definition, very short, it is difficult to deliver enough energy to the system to 

overcome the ever present noise. The amplitude of the impulsive excitation is limited by 

the range of linearity of the system and its duration by the system bandwidth. The 
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convolution integral relating the output, y(t), with the input, x(t), is given as. 

(C. I )  

0 

When x(t)=8(t)f the convolution integral simplifies to yield. 

y(t)=HO (C.2) 

The impulsive excitation method is the simplest, fastest and least expensive. 

Hence, it is the most commonly used method for all ordinary measurement situations. 

When the impulse response to be measured has signal components with very wide 

dynamic range ( > 60 dB), or the measurement system has a poor signal-to-noise ratio, 

this method does not perform very well and is, therefore, not the best choice. 

C.2 Single Frequency Excitation Method 

The continuous wave excitation method has the advantage that monochrome 

signals can be generated reliably and repeatably, and system interrogation can be limited 

to the frequencies of interest. However, a series of separate measurements must be made. 

The cw source permits the use of low power, since coherent time integration can be used. 

A major limitation, however, is that the system must remain acceptably stationary over a 

sufficiently long measurement period. The frequency domain equivalent of the 

input/output convolutional relation of equation (C.l) is. 

Hence, for an input signal at frequency f„, the magnitude of the corresponding output is 

given as. 

(C.3) 
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(c.4) 

and the phase as, 

(C.5) 

The single-tone excitation method is, on one hand, very slow, since the tone 

frequency has to be sweeped over the entire bandwidth of interest. Secondly, the 

generation of very narrow frequency tunable waveform is not a very simple task. It 

requires very complicated and expensive equipment. 

C.3 Pulse Compression Method 

This method is an improvement to the impulsive excitation method of section C.l. 

It is based on the use of a pulse compression waveform, which is an expanded pulse with 

large time-bandwidth product. Various kinds of expanded-pulse waveforms, having large 

time-bandwidth product are possible. Two major classes are FM Chirp waveforms and 

Coded waveforms. Such types of waveforms are used in order to achieve greater pulse 

energy and large pulse bandwidth, and consequently high accuracy, without sacrificing 

range resolution in a peak-power limited system. At the receiver, the received signal is 

passed through a filter matched to the transmitted expanded pulse that compresses the 

received s ignal  energy into a  short  pulse  (Figure C.I) .  

This method of impulse response estimation is used in most modem pulse radars, 

certain seismic exploration systems, and conventional ultrasonic correlation systems. 

While this method provides greater signal-to-noise ratio by increasing the transmit signal 

energy, it suffers from the problem of self-noise. Self-noise is a result of incomplete 

pulse compression in the receiver which in tum is a consequence of the non-ideal linear 

autocorrelation function (LACF) of the expanded-pulse excitation waveform. 
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expanded 
pulse 

compressed 
pulse 

pulse 
compression 

filter 

lest 
system 

h(t) 

Figure C.l: Pseudorandom signal correlation method. 

C.5 Continuous Random Signal Coirelation Method 

A different approach to impulse response estimation is to excite the system with 

continuous, random noise. Because the excitation is applied continuously, more energy is 

delivered to the system for a given amplitude of signal, circumventing the peak-power 

limitation problem. Further, it is easier to assure the uniformity of the energy distribution 

over the frequency range of interest. The response of the system is the convolution of the 

excitation signal with the system's impulse response (Figure C.2). The impulse response 

can be extracted from the measurement by cross-correlating the noise input with the 

output . 

Let u(t) be the input to the system and v(t) be the system output. Then, u(t) being 

a white noise signal, has an autocorrelation function, <j)^(T). given by, 

T 

= 6(T) (C.6) 
0 

The cross-correlation function, . is given as. 
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u(t) 
random 
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v(t) 

Perfect 
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h(t) 

Figure C.2: Random signal correlation method. 

(C.7) 

The convolution integral relating the output, v(t), with the input, u(t), is given as. 

v(f)= Jh(y)u(t-v)dv (C.8) 

Substituting equation (C.8) in equation (C.7) gives. 

4/ jh(y)u{t-v)uit-x)d\dt 
T Ti 

0 0 

(C.9) 

-o 1 
Um[T-'<>o]—Ju(t-v)u(t-x)dtdv (C.IO) 
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A(v)<|)^(v -x)dv (C. 11) 

From equations (C.6) and (C.I 1), we get the final result as, 

m 

4>,n,(T)=jA(v)6(v-c)i/v = A(T) (C.I 2) 
—00 

There are three practical problems associated with this approach of impulse 

response estimation, 

(a) generation of a truly random signal 

(b) variable delay generation for correlation 

(c) realization of correlation filter with infinitely large integration time 

A truly random signal is more of a concept than a physical reality. It is, by 

definition, non-periodic and non-reproducible. In a practical system, however, it is 

required that various delayed versions of the input signal be accessible for correlation 

purposes. A practical correlator has to have a finite integration time. Hence, a lot of 

memory space is required for the correlator and the variable delay generation. This 

results into an inefficient system with very slow operation. 

C.6 Pseudotandom Signal Coirelation Method 

This method of impulse response estimation is, in theory, very similar to the one 

described under section C.5. However, it is much more convenient for practical 

implementation. It takes advantage of the fact that the impulse response of a physical 

system , h(t), is of finite duration, T^. The basic approach is to apply a periodic pseudo

random waveform as the input to the system and perform a periodic crosscorreiation at the 

output (Figure C.3). 

If we let the input to the system be a pseudo-random waveform, s(t), having a 
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Figure C.3: Pseudorandom signal correlation method. 

period, T, , such that, Tj > T,,, and the periodic autocorrelation function given by, 

4>jT)=6(r-nr^) (C.13) 

where n is an integer. Following the mathematical analysis of section C.5, the output of 

the correlator can be written as, 

To 
<|)^(T)=jA(v)<j)^(v-T)dv = A(T)6(T-nrp 

0 

Following deductions can be made from the above results, 

(a) The correlator output represents the system impulse response repeated after 

every Tj. As long as ( Tj > ), the system impulse response can be 

unambiguously extracted from the correlator output. When ( < T^, ), the 

foldover of the impulse response occurs and it is no longer possible to 

unambiguously extract h(t). 

(b) It is only the autocorrelation characteristics of the input signal which is 

critical when extracting the impulse response from the correlator output. 
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otherwise true randomness of the excitation waveform is not a must. Since 

auto-correlation is not a unique function, any waveform deterministic or 

pseudo-random can be used equally successfully as long as its PACF is of 

the form of equation (C.13). 

C.7 Pseudo-Pferiodic Pseudo-Random Signal Coirelation Method 

This method is a simplification of the pseudo-random signal correlation method 

described under section C.6. The calculation of PCCF of two periodic waveforms, 

requires only one period each of the two waveforms. Thus, if we transmit s(t) only for 

the time duration until all the transients in the receive signal die down and one period of 

the stabilized received signal can be acquired, it is sufficient for the off-line evaluation of 

the impulse response fiinction (Figure C.4). 

The time interval required for the stabilization of the received signal is equal to the 

length of the impulse response function, T^. Also, since T^ > T^, a time interval equal to 

one period of the excitation waveform, T,, is sufficient for the stabilization of the received 

signal and another one period is required to be able to capture one period of the received 

transmitter transmitter 
turns on turns off 

t=0 t=2T, 

pseudorandom 
transmit signal 

transient steady state transient 
response response response 

Figure C.4: Schematic representation of transmit and receive signal waveforms. 
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signal. Hence, it is not really necessary to transmit a continuous, periodic waveform to 

take the benefit of periodic correlation fiinction. Instead, if a waveform consisting of only 

two concatenated periods arc transmitted and a specific portion of the received waveform 

is selected to perform the periodic crosscorrelation, it results into an equivalent 

performance. 
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